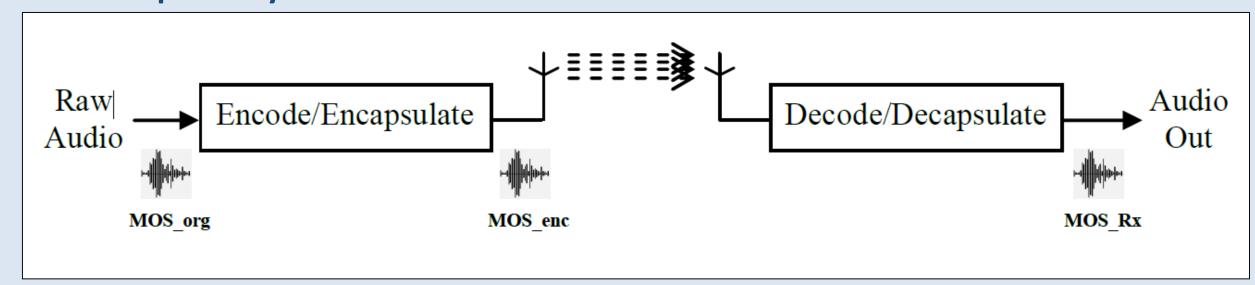


CREW/

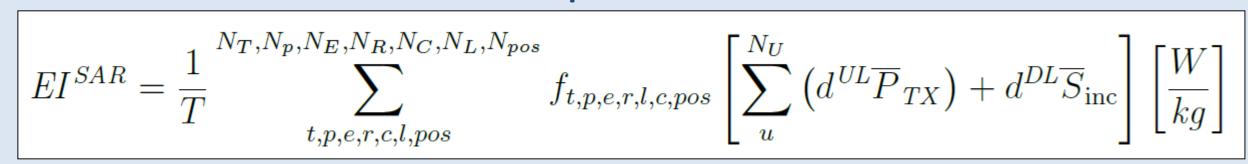
Cognitive Radio Experimentation World

Wi-Fi conferencing optimization: Efficient experiment parameter screening [Arizona State University]

Problem


- ☐ Wireless systems usually have a large number of design parameters (Factors) all of which influence the systems behavior.
- ☐ Which combinations of these factors has the largest influence on the system behavior?

Goal


- □ Identify optimum settings of a Wi-Fi conferencing scenario with 24 configurable parameters (5.5 x 10¹² combinations).
- □ Analyzing system behavior, parameter sensitivity and factor interaction through step by step screening of the design parameters.

Experiment scenario

- ☐ Wi-Fi conferencing scenarios emulated in the w-iLab.t testbed
 - □ Wi-Fi speaker transmits audio to 40 listener nodes for 120sec. (IP/UDP/RTP/audio)
- ☐ 2 performance metrics are evaluated
 - Audio quality

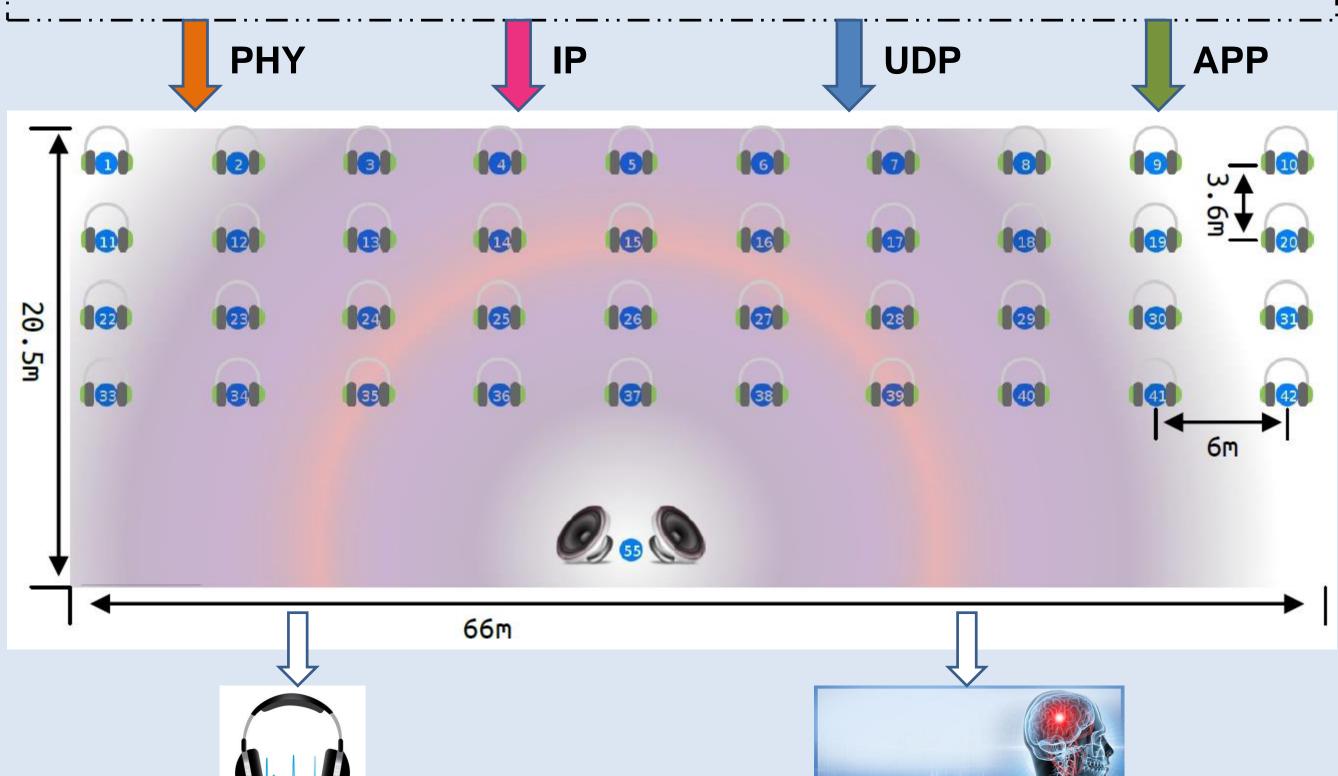
☐ Generated transmission exposure

□ Both metrics are influenced by the 24 design parameters

Locating Array

- □ A locating array identifies the settings in which significant t-way interactions are covered
 - □ Experiment analysis of 1-way (main interactions) and2-way factor interactions
 - ☐ The number d of t-way interactions must be known a priori to construct the array, but analysis can be applied iteratively
- ☐ Total number of experiments (with 24 factors)
 - = 6*5*5*5*5*3*4*5*3*4*4*3*5*4*3*5*4*2*4*3*3*2
 - = 5.59872×10^{12} experiments
 - = 20 M years (if 2 min. / experiment)
- □ Locating Array experiment
 - = 109 experiments
 - = less then 4 hours

Testimony


☐ This was a perfect opportunity to get real data from real testbeds, resulting from lots of parameter combinations.

NICTA

There was a very good collaboration with the CREW partners during the experiment.

Design Parameters

Band, Channel, Rate, Tx-Power, MTU, Tx-QueueLen, Q-Disc,
IP-Frag_Low_Thresh, IP-Frag_High_Thresh, UDP_RMem_Min, RMem_Default,
RMem_Max, WMem_Default, WMem_Max, UDP_Mem_Min, UDP_Mem_pressure,
UDP_Mem_Max, ROHC, Codec, Codec_BitRate, FrameLength_Aggregation,
Interference_COR, Background_Sensing

Audio Quality

Electromagnetic Exposure

Preliminary Results

- □ Audio Quality & latency show normal distributions, but not the jitter
- □ Each objective is sensitive to different parameters
 - ☐ MOS objective is most sensitive to Codec Bitrate.
 - ☐ Latency is most sensitive to the interference.
 - □ Specific parameter combinations can have a high impact due to 2-way interactions
 - ☐ E.g. qdisc=pfo fast udp wmem min=0.1

0 1	
Weight	Factor/Interaction
-2.3577	codecBitrate = 7600/7750
0.97804	$codec=opus \times codecBitrate=16800$
0.58577	$udp_rmem_min=0.019231 \times udp_mem_max=949$
-0.54886	$qdisc=pfifo_fast \times udp_wmem_min=0.1$
-0.50473	udp_wmem_min= $0.5 \times \text{codec} = \text{opus}$
-0.49794	codecBitrate=16800
-0.48517	wmem_default= $0.25 \times \text{sensing}=1$
-0.47448	$mtu=1280 \times codec=opus$
0.4075	$ipfrag_high_thresh=4194304 \times codec=speex$
0.30433	band=2.4 × interferenceChannelOccupancy=0.0

Example outcome table: top 10 interactions affecting aggregate MOS score

PROJECT DATA

Start Date: 01/09/2010; Duration: 60 M

EU Funding: 4.885 M€

Contact:

Ingrid Moerman, iMinds, Belgium ingrid.moerman@intec.ugent.be
Web: http://www.crew-project.eu

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 258301.