
CREW - FP7 - GA No. 258301 D3.1

 1

Cognitive Radio Experimentation World

Project Deliverable D3.1
Basic operational platform

Contractual date of delivery:

Actual date of delivery:

Beneficiaries:

Lead beneficiary:

30-09-11

30-09-11

IBBT – IMEC – TCD – TUB – TUD – TCS – EADS

TCF

Authors: Danny Finn (TCD), Justin Tallon (TCD), Luiz DaSilva (TCD), Jono
Vanhie - Van Gerwen (IBBT), Stefan Bouckaert (IBBT), Ingrid
Moerman (IBBT), Christoph Heller (EADS), Alejandro Sanchez
(TCS), David Depierre (TCS), Sofie Pollin (imec), Peter
VanWesemael (imec), Jan Hauer (TUB), Daniel Willkomm (TUB),
Mikolaj Chwalisz (TUB), Nicola Michailow (TUD), Carolina
Fortuna (JSI), Zoltan Padrah (JSI), Marko Mihelin (JSI)

Reviewers: Daniel Willkomm (TUB), Jan Hauer (TUB), Mikolaj Chwalisz
(TUB), Danny Finn (TCD)

Workpackage:

Estimated person months:

Nature:

Dissemination level:

Version

WP3 – Creating the Federation

42

R

PU

1.0

Abstract: This public document gives a detailed description of the functionality of the first operational
federated platform. This platform will include a first version of the PORTAL and supports intra-
country component combinations and basic data collection. This deliverable reports on the activities
performed in all tasks of this work package.

Keywords: network testbeds, federation, wireless networks, cognitive radio, cognitive network,
functionalities, capabilities, components, combination, interface, data format, portal, guidelines.

CREW - FP7 - GA No. 258301 D3.1

 2

Revision history

Version Date Author Description

0.0 01/06/2011 Alejandro SANCHEZ
(TCS)

Initial draft from CREW documents
template

0.1 01/08/2011 Alejandro SANCHEZ
(TCS)

ToC updated for inclusion of
common data format following Berlin
meeting

0.2 08/08/2011 Alejandro SANCHEZ
(TCS), David DEPIERRE
(TCS)

TCF contributions added:

• Added sections 3.7, 6.4.1

• New chapter 2 inserted

• Section 6.3.1 filled

0.2.1 9/08/2011 Stefan Bouckaert (IBBT),
Jono Vanhie-Van Gerwen
(IBBT)

Added contributions related to the
IBBT testbed

0.2.2 11/08/2011 Christoph Heller (EADS) First paragraphs of conclusion added

0.2.3 16/08/2011 Alejandro SANCHEZ
(TCS)

Merged contributions from IBBT:

• Chapter 5 “Common portal”

• Section 6.4.2 added

Merged contributions from TCD and
TUB

0.3 17/08/2011 Alejandro SANCHEZ
(TCS)

Latest conclusion from EADS
included. Version published.

0.3.1 19/08/2011 Sofie Pollin (imec) Extended section 3.4 for imec

0.3.2 24/08/2011 Nicola Michailow (TUD) Filled section 3.3

0.4 31/08/2011 Alejandro SANCHEZ
(TCS)

New Federation figure

Separated “Common data formats”
document merged within chapter 3.

List of acronyms reviewed

Appendix added, references added

1.0 27/09/2011 Alejandro SANCHEZ
(TCS)

Final version

CREW - FP7 - GA No. 258301 D3.1

 3

Executive Summary

D3.1 establishes the first operational basic federation platform following the efforts for integration of
the different testbeds carried out during the first year. The document compiles and describes all the
functionalities that the consortium makes available for external partners’ usage. The main features
along with some usage guidelines are provided in the document for each individual testbed. Similarly
for individual or standalone components, i.e. IMEC Sensing agent and TCF LTE multi-antenna
sensing device, further insights into their behaviour, integration and leveraging in existing testbeds are
provided. In the case of LTE multi-antenna detection, the document delves with the algorithmic details
of the solution proposed. The content presented in D3.1 is new, but it relies heavily on information
already published within other deliverables. For that reason this document should be read with
previous deliverables at hand, particularly D2.1 and D2.2 that explain the testbed architectures.

An entire chapter is devoted to the topic of common data formats. As announced in the technical
annex, finding common data representation formats in a project addressing experimentation is of
paramount importance. The chapter exposes the rationale behind the chosen data format, describes the
template and the data types selected and provides a set of examples where the format is applied.

The common portal, a pivotal element of the whole project is very quickly addressed since more
information is available online.

Special attention has to be paid to the content dealing with the testbed components and combinations.
These combinations, another core element of work package 3, together with the common data formats,
enable the creation of the virtual components. To make the interaction between components possible,
interfaces are described with great detail.

Two interfaces are introduced: The Transceiver Facility API interface, and the IMEC sensing platform
interface. The details exposed from these interfaces are supposed to offer external experimenters, or
anyone considering a combination of separated individual elements, all the necessary knowledge to
properly use the available features, and exploit the capabilities. For the Transceiver Facility API, Use
cases are provided that should enable the user to better know how to use the interface functions and
variables.

Even if the notion of virtual component and more specifically the potential number of virtual
components is bolstered by the interfaces, other combinations could be envisioned without using the
interfaces. Thus, two examples of combinations are given that use the available Federation
functionalities in a straightforward way. One is the simulation of the LTE detection algorithm using
real data produced by the LTE testbed. The data is generated at the source (the LTE Base station cell)
and replayed on a computer where the synchronization and detection algorithm runs. The second is
insertion of the IMEC advanced sensing platform in the IBBT testbed to extend, complete and
strengthen the native sensing capabilities of the testbed. These two examples give good insights into
the added value the federation brings for experimentation.

CREW - FP7 - GA No. 258301 D3.1

 4

List of Acronyms and Abbreviations

API Application Programming Interface

ASIP Application-Specific Instruction-set Processor

ADC Analogue to Digital Converter

BLER Block Error Rate

BAN Body Area Network

BTS Base Station Transceiver

CR Cognitive Radio

CRAWDAD Community Resource for Archiving Wireless Data At Dartmouth

CREW Cognitive Radio Experimentation World

CP Cyclic Prefix

DIFFS Digital Front-end For Sensing

DL Down Link

DSP Digital Signal Processor

DVB-T Digital Video Broadcast Terrestrial

eNB Enhanced Node B

ECG Electrocardiographie

EMG Electromyographie

EVA Extended Vehicular A

FARAMIR Flexible and spectrum-Aware Radio Access through Measurements and modelling In
cognitive Radio Systems

FCC Federal Communications Commission

FDD Frequency Division Duplex

FFT Fast Fourier Transform

FIFO First In First Out

FPGA Field Programmable Gate Array

GIS Geographic Information System

GPP General Purpose Processor

GSR Galvanic Skin Response

HAL Hardware Abstraction Layer

HARQ Hybrid Automatic Repeat reQuest

ISM Industrial Scientific Medical

IEEE Institute of Electrical and Electronics Engineers

I/O Input/Output

I/Q In-phase/Quadrature

IP Intellectual Property

CREW - FP7 - GA No. 258301 D3.1

 5

LTE Long Term Evolution

MAC Medium Access Control

MIMO Multiple Input Multiple Output

MCU Micro Controller Unit

OFDM Orthogonal Frequency Division Multiplex

OFDMA Orthogonal Frequency Division Multiple Access

PBCH Physical Broadcast Channel

PCFICH Physical Control Format Indicator Channel

PD Probability of Detection

PDCCH Physical Data Control Channel

PFA Probability of False Alarm

PHICH Physical Hybrid ARQ Indicator Channel

PHY Physical Layer

PSS Primary Synchronization Signal

QAM Quadrature Amplitude Modulation

QPSK 4 Phase Shift Keying

RAT Radio Access Technology or Technique

RF Radio Frequency

SCALDIO Scalable Radio

SDR Software Defined Radio

SINR Signal to Interference and Noise Ratio

SIMO Single Input Multiple Output

SIMD Single Instruction Multiple Data

SSH Secure Shell

SSS Secondary Synchronization Signal

SWF Spatial Wiener Filter

TETRA Terrestrial Trunked Radio

TDD Time Division Duplex

TTI Transmission Time Interval

TWIST TKN Wireless Indoor Sensor Network Testbed

UE User Equipment

UL Up Link

USRP Universal Software Radio Peripheral

E-UTRA Evolved Universal Terrestrial Radio Access

VNC Virtual Network Computing

WARP Wireless Open Access Research Platform

WCDMA Wireless Code Division Multiple Access

CREW - FP7 - GA No. 258301 D3.1

 6

WF Waveform

WIMAX Wireless Microwave Access

WInnF Wireless Innovation Forum

XML Extensible Markup Language

CREW - FP7 - GA No. 258301 D3.1

 7

Table of contents

1 Introduction .. 10

1.1 Scope 10

1.2 Document purpose and intended audience .. 10

1.3 References and links to other workpackages and deliverables .. 10

2 CREW federation implemented functionalities ... 11

2.1 TCD Iris testbed supported functionalities .. 12
2.1.1 Powering the USRPs ... 13
2.1.2 VNC access ... 13

2.2 TUB TWIST testbed supported functionalities ... 14
2.2.1 TWIST sensornet testbed .. 16
2.2.2 Mobile robot .. 17

2.2.3 USB spectrum analyser framework ... 17

2.2.4 BAN sensor nodes ... 17

2.3 TUD LTE+ Testbed supported functionalities .. 17
2.3.1 Uplink functionality .. 19

2.3.2 Downlink functionality .. 19

2.3.3 Signal measurement functionality ... 19

2.4 IMEC sensing platform supported functionalities .. 20
2.4.1 Integrating the sensing solution in the experimenter’s own testbed through the USB interface and

use of the driver ... 20

2.4.2 Leveraging on the integration of the sensing engine in CREW testbeds 21

2.4.3 Reprogramming the sensing engine with specific functionality .. 21

2.4.4 Making use of samples from the sensing engine to test algorithms .. 23
2.4.5 Mixing and matching the hardware of the sensing engine with the experimenter’s own hardware

components.. 23

2.5 IBBT w-iLab.t testbed supported functionalities .. 23
2.5.1 Install (custom) firmware, software, drivers, protocols on embedded PCs and sensor nodes 26

2.5.2 Use of the cognitive radio platforms: USRP hardware with 2.4 GHz ISM front-end 26

2.5.3 Use of the CREW benchmarking framework: reproducible environments and performance
comparison .. 26

2.5.4 Use of imec sensing agents.. 27

2.6 THALES Multi-antenna LTE detection procedure .. 27
2.6.1 Introduction ... 27

2.6.2 Reference-based multi-antenna detection .. 27

2.6.2.1 Mathematical notations and signal modeling.. 27

2.6.2.2 Optimal spatial detector .. 28

2.6.2.3 Asymptotic value of the criterion at the synchronization positions ... 30

2.6.2.4 False alarm probability.. 30

2.6.2.5 Application to LTE standard ... 31

CREW - FP7 - GA No. 258301 D3.1

 8

3 Common Data Collection/Storage Methodology Design 35

3.1 Introduction .. 35

3.2 Background on IEEE 1900.6 ... 35

3.3 Definition of the data of interest ... 35

3.4 Examples ... 38
3.4.1 BAN Example ... 38

3.4.2 BEE2 Example .. 42

3.4.3 Receiver calibration ... 44

3.4.4 Dublin Sensing Experiment ... 47

4 Common portal .. 55

5 Testbeds components and combinations ... 56

5.1 Mix and match components approach, the “virtual components” 56

5.2 Component interfaces .. 56
5.2.1 Transceiver Facility API ... 56

5.2.1.1 Concept and approach ... 56

5.2.1.2 Transceiver functionality ... 57

5.2.1.3 Key concepts .. 58

5.2.1.3.1 Up-Conversion and Down-Conversion ... 58

5.2.1.3.2 Burst ... 58

5.2.1.3.3 Baseband signal exchange .. 59

5.2.1.3.4 Time management mechanisms .. 60

5.2.1.4 Interfaces ... 61

5.2.1.4.1 Interface methods .. 62

5.2.1.4.2 Example use cases for Bursts Time Profile configuration .. 64
5.2.2 IMEC interfaces .. 67

5.3 Combined virtual components description .. 72
5.3.1 LTE detector simulation environment ... 72

5.3.1.1 Simulation environment ... 72

5.3.1.2 Spatial propagation channel model ... 73
5.3.2 Combining the imec spectrum sensing agent and the IBBT w-iLab.t ... 74

5.3.2.1 Motivation ... 74

5.3.2.2 Implementation and possibilities ... 75

5.3.2.3 Additional possibilities and future work ... 76

6 Conclusion ... 77

7 References ... 78

8 Appendix A: CREW Portal... 79

CREW - FP7 - GA No. 258301 D3.1

 9

9 Appendix B: BEE2 example .json ... 162

10 Appendix C: Outdoor spectrum sensing with VSN 165

CREW - FP7 - GA No. 258301 D3.1

 10

1 Introduction

1.1 Scope
This document aims at providing a complete and detailed description of the first basic operational
federated CREW testbed. It will detail, one by one, the implemented and supported functionalities of
the first release of the CREW federation. D3.1 belongs to WP3 “Creating the Federation”. It is
consequently addressing the details of the creation or set-up of the Federation. The necessary effort to
bring together the separated testbeds into an integrated Federation is therefore covered here.

Chapter 1: Introduces D3.1

Chapter 2: Lists the implemented (supported) functionalities of the federated testbeds

Chapter 3: Describes the common data formats proposed in accordance with the experiments

Chapter 4: Short overview of the CREW common portal

Chapter 5: Interfaces descriptions and potential combinations of testbeds elements for advanced
experiments.

1.2 Document purpose and intended audience
This document is intended to provide a main reference to anyone interested in the usage of the CREW
Federation. It should provide enough information to clearly grasp the capabilities of the Federation in
terms of available functionalities so a potential external user may be able to make an assessment on
the feasibility (or not) of the experiment he or she could have in mind.

1.3 References and links to other workpackages and deliverables
Please note that this document is not self-contained and more details on the CREW Federation
testbeds may be found in other published documents. These details are quickly presented here to avoid
redundancy. The present document will refer to those when appropriate. Two fundamental documents
complement D3.1, these are:

D2.1 Definition of Internal Usage Scenarios: which focus on the initial CREW usage scenarios for
the Federation.

D2.2 Definition of the Federation: which gives a wider overview or high-level description of the
CREW Federation and its basic functionalities.

CREW - FP7 - GA No. 258301 D3.1

 11

2 CREW federation implemented functionalities
The figure below provides an overview of the CREW federation and the integrated testbeds, before the
start of the project.

Figure 1: The CREW federated testbed

During the first year of the project, different components of the federation were integrated, and new
functionality was designed. The resulting CREW federation as it exists today is shown in Figure 2.
Besides the functionality that is readily available now, more components can be combined today on
request. For example, while the imec sensing agent is only drawn in the Ghent testbed, such sensing
agents could also be moved to other locations.

CREW - FP7 - GA No. 258301 D3.1

 12

Figure 2 - CREW federation after Y1 of the project

2.1 TCD Iris testbed supported functionalities
The TCD Iris software defined radio testbed, has been already described in document D2.2 and
consists of a highly reconfigurable software radio architecture that can be used to construct complex
radio structures from a combination of C++ and XML. It is a GPP-based radio architecture and uses
XML documents to describe the radio structure. This testbed provides a highly flexible architecture for
real-time radio reconfigurability based on intelligent observations the radio makes about its
surroundings.

As well as this software architecture, there exists a physical testbed that is integrated with the software
that enables practical experimentation. The hardware components of the testbed at TCD consist of four
Quad core machines, each of which has attached either a USRP 1, USRP 2 or USRP N210. The USRP
(Universal Software Radio Peripheral) is a family of hardware used as an RF frontend for software
radios. The USRP 1’s have an 8MHz bandwidth, and the USRP 2’s and USRP N210’s have a 24MHz
bandwidth (using Gigabit Ethernet to communicate between the USRP and the computer). The
daughterboards available are the RFX2400 which are capable of transmitting and receiving between
2.3 and 2.9 GHz and the XCVR2450 dual band transceiver which can operate from 2.4 to 2.5 GHz and
from 4.9 to 5.85 GHz. The structure of the testbed can be seen in Figure 3 below.

The entirety of the iris software can be downloaded and installed by following the instructions on the
iris wiki https://ntrg020.cs.tcd.ie/irisv2/.

Use of the Iris testbed must be scheduled beforehand, this is done using the testbed google calendar.
The calendar is called ctvr.testbed.

After obtaining an Iris testbed user account, the testbed can be fully, remotely accessed by external
users:

https://ntrg020.cs.tcd.ie/irisv2/

CREW - FP7 - GA No. 258301 D3.1

 13

2.1.1 Powering the USRPs
We have installed a remote power switch which allows us to remotely power each of the USRPs on
and off. This switch can be controlled through a web interface.

Access the switch by navigating to http://ctvr-switch.cs.tcd.ie in your web browser.

2.1.2 VNC access
A useful approach for accessing the testbed remotely is through VNC. SSH into a node and start a
VNC server as follows:

ssh nodeuser@ctvr-node07.cs.tcd.ie

vncserver :1 -geometry 1280x900

This will create a vncserver on display 1 of node 07 and with a 1280x900 screen resolution.

Once the server is running, use a VNC client to connect. In this case, we would connect to ctvr-
node07.cs.tcd.ie:1.

When you are finished, kill the VNC server on the testbed node as follows:

vncserver -kill :1

Once the user has accessed the testbed remotely as shown above, radios and their respective
components can be opened, edited and run over the air between different nodes in the testbeds.

Use of the Anritsu MG3700A signal generator and the Rhode and Schwarz FSVR real-time spectrum
analyser is done in a similar way. Full details of how this is done, as well as further details on other
aspects of testbed use, are available on the Iris testbed section of the CREW portal.

http://ctvr-switch.cs.tcd.ie/

CREW - FP7 - GA No. 258301 D3.1

 14

Figure 3: Overview of hardware available to experimenters in the TCD Iris lab

2.2 TUB TWIST testbed supported functionalities
The TUB TWIST testbed was already introduced in CREW deliverable D2.2, Section 1.5. As stated
in that document, the TKN Wireless Indoor Sensor Network Testbed (TWIST) is a multi-platform,
hierarchical sensor network testbed architecture developed at the Technische Universität Berlin
(TUB). One instance is currently deployed at TUB campus: a total of 204 sensor nodes (102 eyesIFX
and 102 Tmote Sky nodes) are distributed in a 3D grid spanning 3 floors of an office building,
resulting in more than 1500 m² of instrumented office space.

In the following we give an overview of the hardware, tools, and functionalities that are available to
the experimenters at the TUB testbed. An experimenter will have access to the following components:

(1) The TWIST sensornet testbed with 204 sensor nodes,

(2) One mobile robot that t can be programmed to follow certain trajectories in the TWIST
building. Shimmer2 sensor nodes or WiSpy devices (see below) can be mounted on the
robot, e.g. to record RF environmental maps, or perform experiments emulating body area
networks (BANs) as well as experiments involving interaction between a mobile network
and the fixed TWIST infrastructure,

CREW - FP7 - GA No. 258301 D3.1

 15

(3) A set of low-cost USB spectrum analyzers with a custom software framework on a laptop,
which may be deployed at various locations in the testbed or on the mobile robot to
monitor spectrum usage during an experiment,

(4) A set of at least 8 shimmer2r sensor nodes to be used for mobile BAN experiments; a
custom setup for synchronization of the nodes via digial I/O cabling is provided as well as
a laptop with a pre-installed toolchain to program/access the shimmer2r nodes.

These components are depicted in Figure 4 and described in more detail below.

Figure 4: Overview of hardware available to experimenters in the TUB TWIST testbed

CREW - FP7 - GA No. 258301 D3.1

 16

2.2.1 TWIST sensornet testbed
The first component, the TUB TWIST sensornet testbed, was introduced in CREW deliverable D2.2,
Section 1.5 on a rather high level. Figure 5 gives a more concise view of the functionality that is
offered to the user, and highlights how it is accessed as well as which parts can be modified /
parameterized by the user during an experiment.

Figure 5: General overview of available TWIST functionality

A user can access the TWIST testbed via a web interface remotely. The first step of an experiment
always involves scheduling of an experiment by reserving an adequate experiment “job” (a time slot
and a set of resources, such as the type of sensornodes). Once the user’s job becomes active, the user
can upload node images (firmware image) to a set of nodes. The user may decide to upload different
images to different nodes in parallel.

TWIST supports automatic tracing, i.e. whenever nodes output data (such as experiment results,
traces, debug messages, etc.) over the serial line the data is automatically stored in the trace file, which
the user may download after the experiment has been completed. In addition a user may want to
interact with a set of sensor nodes over the USB control channel during the experiment in realtime
(e.g. to change some node parameters). This is supported by providing access to each node’s TinyOS
1.x or 2.x SerialForwarder, which establishes a connection over a TCP/IP stream in order to get serial
access to the node.

A more detailed explanation on which TWIST functionality an experimenter can use and how they are
accessed (job registration, installation of a node image, using the tracing server, etc.) is described in
several detailed tutorials on the portal.

CREW - FP7 - GA No. 258301 D3.1

 17

2.2.2 Mobile robot
Experimenters have access to a mobile iRobot Roomba robot which is coupled with a Microsoft
Kinect sensor. The robot runs ROS (an open-source, meta-operating system) and it can be
programmed to follow certain trajectories in the TWIST building. It can be controlled by the
experimenter via custom scripts to perform repeatable mobility patterns. In contrast to the TWIST
sensornet testbed the robot cannot be accessed remotely (via a webinterface), i.e. experimenters have
to be present to start their experiments locally. Shimmer2 sensor nodes or WiSpy devices may be
mounted on the robot, e.g. to record RF environmental maps, or perform experiments emulating body
area networks (BANs) as well as experiments involving interaction between a mobile network and the
fixed TWIST infrastructure.

2.2.3 USB spectrum analyser framework
The testbed infrastructure includes several commercial low-cost USB spectrum analysers: Wi-Spy
2.4x (Metageek). The Wi-Spy 2.4x is a spectrum analyser that scans for RF activity (RF power) in the
2.4 GHz spectrum. The Wi-Spy 2.4x allow users to quickly identify interference and analyse the
quality of the signal. Compared to other spectrum sensing solutions these devices may not be very
accurate, however, in certain cognitive radio scenarios they may be sufficient to be used as sensing
agents. Wi-Spys may, for example, be deployed at various locations in the testbed or mounted on the
mobile robot to monitor spectrum usage during a sensornet experiment.

The infrastructure includes the USB spectrum analysers in conjunction with a customized software
framework, which provides an experimenter with fine-grained control over the parameter setting (e.g.
select only a subset of the entire 2.4 GHz ISM band). The laptop with the pre-installed software
framework is also part of the infrastructure and can be utilized during the experiments.

2.2.4 BAN sensor nodes
The testbed infrastructure includes a set of shimmer2 sensor nodes which may be used in BAN (Body
Area Network) scenarios. Like the popular Telos sensor node platform, Shimmer2 integrates the Texas
Instruments MSP430 MCU and the IEEE 802.15.4-compliant CC2420 transceiver. In addition, the
Shimmer2 platform also incorporates a Bluetooth radio. Every Shimmer2 node has an integrated 3-
axis accelerometer (Freescale MMA7260Q), which we can be utilized to monitor the subject’s
movement pattern. Furthermore, we provide a set of medical sensors (ECG, GSR, EMG) that may be
used to develop realistic medical application scenarios. Our Shimmer nodes are also equipped with a 2
GB MiniSD card, which is sufficient to store all traces that accumulate during an experiment.

The shimmer2 sensor nodes are provided together with a laptop with a pre-installed toolchain for
installing TinyOS 2 node images via the shimmer programmer board. The laptop also allows users to
conveniently access the measurement traces on the MiniSD card after an experiment. Together with
the remaining TWIST infrastructure, an experimenter may, for example, investigate cognitive radio
techniques that couple mobile (BAN) with a static (TWIST) networks or low-cost sensing agents
(WiSpy). The BAN sensor nodes can also be mounted on the mobile robot, for example, to emulate a
mobile BAN.

Finally, the BAN sensor nodes are provided together with an optional custom setup that allows users
to connect the BAN nodes via a digital I/O control channel (via dedicated cabling). This additional
channel may be used, for example, to achieve tight time-synchronization between the nodes (at the
order of microseconds).

2.3 TUD LTE+ Testbed supported functionalities
A list of the components that are available in the LTE+ testbed can be found in D2.2, section 2.3.
Experiments can be conducted either in the indoor lab or with the two outdoor sites on the roof of the
university building.

Base station (eNB) and mobile terminal (UE) nodes each are connected to a host PC and configured
with text files in XML format. The host computer also manages measurements of the received signals

CREW - FP7 - GA No. 258301 D3.1

 18

and stores them in dumps. At the eNBs, a GPS unit is used for synchronization, while the UEs employ
GPS for position tracking. Additionally, UEs can be powered by a mobile power supply if necessary.

Figure 6: Configuration of a baste station node (eNB)

Figure 7: Configuration of a mobile terminal node (UE)

It is important to distinguish if a downlink (DL) or an uplink (UL) experiment is desired. Further,
when considering the supported functionalities, it is necessary to be aware that the testbed provides
only basic compliance with LTE Rel. 8 and that there are several deviations: Particularly in DL, the
frame structure and control channels slightly differ from what is stated in the specifications:

• PDCCH is always on the 2nd OFDM-symbol

• PHICH is not in the first OFDM symbol and has a different structure and content

• PCFICH is not supported

• PBCH is not supported

The uplink operates with OFDM. Also, 5 MHz and 10 MHz mode are not supported, thus the testbed
operates in 20 MHz mode only. At the moment of writing this document, the testbed hardware
occupies E-UTRA Band 7 at 2.6 GHz. However due to regulatory constraints we expect to switch to
frequencies around 2.1 GHz within the next 9 months.

CREW - FP7 - GA No. 258301 D3.1

 19

2.3.1 Uplink functionality
In uplink experiments, it is possible to serve up to 4 UEs. The UEs use 1 antenna for transmission,
while the eNBs can receive with 1 or 2 antennas. The resolution for scheduling a transmission is 1 ms,
which corresponds to 1 TTI (transmission time interval). Scheduling can be done for a total duration
of several minutes. The number of occupied PRBs is either 10, 20, 30 or 40 (cf. Table 1). QPSK,
16QAM and 64QAM modulation are supported.

2.3.2 Downlink functionality
In downlink, up to 4 UEs and up to 4 eNBs can be used simultaneously. The eNBs can transmit with
up to 2 antennas and the UEs can receive with up to 2 antennas, thus up to 2 streams per UE can be
sent. Time resolution is 1 ms corresponding to 1 TTI (same as UL). The number of occupied PRBs can
be 12, 24, 36 or 48 (cf. Table 2).

2.3.3 Signal measurement functionality
The evaluation of an experiment happens via dumps of the received signals at the UEs / eNBs. While
in the UL, signal dumps can be recorded for all eNBs in synch, the dumping process needs to be
initiated manually and out of synch in the DL.

The signal dumps contain the received time samples as well as additional control information. Further
processing in Matlab allows derivation of indicators like SINR, BLE, etc. in semi-realtime/offline.

Table 1: Supported transport formats for uplink

Idx Size
(bits) #PRBs Mod Idx Size

(bits) #PRBs Mod Idx Size
(bits) #PRBs Mod

0 80 10 QPSK 23 7840 20 16QAM 48 13760 40 16QAM

1 240 10 QPSK 26 240 30 QPSK 49 15680 40 16QAM

2 480 10 QPSK 27 720 30 QPSK 55 4000 10 64QAM

3 800 10 QPSK 28 1440 30 QPSK 56 5360 10 64QAM

4 1280 10 QPSK 29 2400 30 QPSK 57 6080 10 64QAM

5 1680 10 QPSK 30 3840 30 QPSK 58 6640 10 64QAM

6 2080 10 16QAM 31 5040 30 QPSK 59 6960 10 64QAM

7 2560 10 16QAM 32 6240 30 16QAM 60 7920 10 64QAM

8 2960 10 16QAM 33 7680 30 16QAM 61 8000 20 64QAM

9 3440 10 16QAM 34 8880 30 16QAM 62 10720 20 64QAM

10 3920 10 16QAM 35 10320 30 16QAM 63 12000 20 64QAM

13 160 20 QPSK 36 11760 30 16QAM 64 13280 20 64QAM

14 480 20 QPSK 40 960 40 QPSK 65 14080 20 64QAM

15 960 20 QPSK 41 1920 40 QPSK 66 15840 20 64QAM

16 1600 20 QPSK 42 3200 40 QPSK 67 12000 30 64QAM

17 2560 20 QPSK 43 5120 40 QPSK 68 16080 30 64QAM

18 3360 20 QPSK 44 6720 40 QPSK 69 18000 30 64QAM

19 4160 20 16QAM 45 8320 40 16QAM 70 19920 30 64QAM

20 5120 20 16QAM 46 10240 40 16QAM 71 20880 30 64QAM

21 5920 20 16QAM 47 11840 40 16QAM 72 23760 30 64QAM

22 6880 20 16QAM

CREW - FP7 - GA No. 258301 D3.1

 20

Table 2: Supported transport formats for downlink

Idx Size
(bits) #PRBs Mod Idx Size

(bits) #PRBs Mod Idx Size
(bits) #PRBs Mod

1 288 12 QPSK 24 4992 24 16QAM 47 16416 36 64QAM

2 576 12 QPSK 25 6144 24 16QAM 48 18720 36 64QAM

3 960 12 QPSK 26 7104 24 16QAM 49 19872 36 64QAM

4 1536 12 QPSK 27 8256 24 16QAM 50 21312 36 64QAM

5 2016 12 QPSK 28 9408 24 16QAM 51 23904 36 64QAM

6 2496 12 16QAM 29 10944 24 64QAM 54 384 48 QPSK

7 3072 12 16QAM 30 12480 24 64QAM 55 1152 48 QPSK

8 3552 12 16QAM 31 13248 24 64QAM 56 2304 48 QPSK

9 4128 12 16QAM 32 14208 24 64QAM 57 3840 48 QPSK

10 4704 12 16QAM 33 15936 24 64QAM 58 6144 48 QPSK

11 5472 12 64QAM 36 288 36 QPSK 59 8064 48 QPSK

12 6240 12 64QAM 37 864 36 QPSK 60 9984 48 16QAM

13 6624 12 64QAM 38 1728 36 QPSK 61 12288 48 16QAM

14 7104 12 64QAM 39 2880 36 QPSK 62 14208 48 16QAM

15 7968 12 64QAM 40 4608 36 QPSK 63 16512 48 16QAM

18 192 24 QPSK 41 6048 36 QPSK 64 18816 48 16QAM

19 576 24 QPSK 42 7488 36 16QAM 65 21888 48 64QAM

20 1152 24 QPSK 43 9216 36 16QAM 66 24960 48 64QAM

21 1920 24 QPSK 44 10656 36 16QAM 67 26496 48 64QAM

22 3072 24 QPSK 45 12384 36 16QAM 68 28416 48 64QAM

23 4032 24 QPSK 46 14112 36 16QAM 69 31872 48 64QAM

2.4 IMEC sensing platform supported functionalities
The use of the imec sensing engine was already introduced in CREW deliverable D2.2. In that
deliverable, various ways to make use of the sensing engine were introduced. In this deliverable, we
use the same approaches and elaborate a bit more on how to implement these various possible
experiments.

2.4.1 Integrating the sensing solution in the experimenter’s own testbed through the
USB interface and use of the driver

The imec sensing engine is equipped with a USB interface. All configuration, control and
measurement data is communicated via this interface. The host which controls the sensing engine
needs to have the libusb library, which provides user applications a uniform access to USB devices on
different operating systems, installed. A Hardware Abstraction Layer (HAL) and Application
Programmers Interface (API) have been developed for usage of the sensing engine with a Linux host
PC running Ubuntu. Both HAL and API are developed in ANSI C code which will enable portability
to other operating systems.

CREW - FP7 - GA No. 258301 D3.1

 21

Figure 8: Sensing Engine Host integration

Figure 8 shows an overview of the system: the Host PC runs the Experimenter application which
needs to access the Sensing Engine through the API.

The interfaces in the HAL are described in more detail in Section 5.2.2 of this deliverable.

2.4.2 Leveraging on the integration of the sensing engine in CREW testbeds
During the federation activities of the CREW project, the sensing engine will be federated with the
CREW testbeds. This will allow new modes to use the sensing engine. For instance, when multiple
sensing engines are integrated in the w-iLab.t testbed of IBBT, it will be possible to use the IBBT
tools for creating a scenario, a test and benchmarking. This will enable testing a larger set of usage
scenarios, such as, for instance, distributed sensing. The sensing engine can then be accessed through
the interfaces available in the hosting testbed. This is discussed more in Section 2.5.4 and Section
5.3.2 for the case of the integration in the Wilab.t testbed.

2.4.3 Reprogramming the sensing engine with specific functionality
The sensing engine is very flexible and programmable. While basic functionality is there, after the first
year of the CREW project, one can envision that researchers will be interested in testing newly
developed functionality on the platform. The functionality that is there at the end of the first year of
the project is (discussed in more details in D6.1):

• Sweeping of the 2.4 GHz ISM band for integration in the w-iLab.t testbed and for doing
sensing experiments in the 2.4 GHz ISM band.

• Sensing of the OFDMA resource allocation of LTE. (currently not supported through API)

• Feature-detection of DVB-T.

To write new functionality for the sensing engine, one should write a program for the 32-slot SIMD
processor (with optimized instruction set that was designed using the Coware toolflow. Special
instructions/hardware accelerators exist for:

• Auto/Cross correlation and signal power

• Parallel FFT (128 complex values).

CREW - FP7 - GA No. 258301 D3.1

 22

Figure 9: SIMD processor in the Sensing Engine Processor with accelerators.

In addition to the SIMD processor, one can configure the automatic gain control, the IQ imbalance and
DC Offset compensation blocks, and the flexible filter branch. A high level overview of the processor
is given in Figure 10.

Figure 10: Sensing Engine processor high level view.

CREW - FP7 - GA No. 258301 D3.1

 23

More information on how to interface with the chip is given in Section 5.2.2 and Table 4.

2.4.4 Making use of samples from the sensing engine to test algorithms
If it is not possible, or too much effort, to run the sensing functionality on the hardware, one could
imagine testing functionality using I and Q samples obtained from the sensing engine. Various
samples have been collected during the CREW experiments that were held in Dublin, Dresden and
Berlin. These data sets are available through the CREW portal and the common data format is
described in Section 3.

2.4.5 Mixing and matching the hardware of the sensing engine with the experimenter’s
own hardware components

The sensing engine, as used in the CREW federated testbed, can contain the SCALDIO or the WARP
front-end. It could be possible to experiment with other front-ends, so as to compare the performance
of different front-end solutions.

For instance, the current board is designed to operate with the imec Scaldio-2b board, the imec
Scaldio-2c board and the Rice university WARP board. Each can be used for different sensing
scenarios. With the Scaldio-2b board, it is possible to scan from 1MHz to 6 GHz with a single sensing
engine. With the WARP board it is possible to sense the ISM bands, using up to 10 different sensing
engines. With the WARP board, it is also possible to replay interference in the ISM bands. The
different scenarios can be implemented by connecting different RF front-ends to the sensing engine
processor board. It is possible to connect also different front-ends, provided the connector matches.

2.5 IBBT w-iLab.t testbed supported functionalities
The IBBT w-iLab.t infrastructures were already introduced in CREW deliverable D2.2, Section 2.5.
As stated in this document, the w-iLab.t is a wireless Wi-Fi and sensor network testbed infrastructure,
currently deployed across three 90 m x 18 m floors of the IBBT office building in Ghent, Belgium. At
200 places throughout the office spaces, meeting rooms and corridors, wireless hardware is mounted
to the ceiling.

At the moment of writing this deliverable, an extension to the w-iLab.t infrastructure is being set up in
a building in Zwijnaarde, Belgium, located approximately 5 km away from the current instance of w-
iLab.t. This extension to the infrastructure will be available to the experimenters joining the CREW
project after the first open call for experimenters (experiments are expected to start in January 2012).

The following paragraphs give an overview of the hardware, tools, and functionalities that are
available to the experimenters at the two testbed locations (IBBT office and Zwijnaarde). When
executing experiments in the office building, experimenters should take into account that interference
from other 2.4 GHz and 5 GHz ISM test set-ups and production networks is likely. Measurements
performed at the Zwijnaarde location show that minimal 2.4 GHz and 5 GHz ISM interference is
suffered at this location, which stems from the fact that this testbed is located on top of a cleanroom
facility, which is encapsulated in metal and concrete. Moreover, at this location, there are no offices
with production (or experimental) Wi-Fi networks in the immediate environment of the testbed nodes.
For this reason, the Zwijnaarde location will also be labelled “pseudo-shielded” in what follows.

Figure 11 shows a schematic overview of the hardware that is available at the two testbed locations
(office environment and pseudo-shielded environment). The equipment on the right of the figure that
is not displayed in a box, includes the computer of the experimenter (located anywhere on the
internet), and a set of routers, switches and links that enable the user to take control over the actual
testbed devices (drawn in the boxes). Note that the drawing represents the switches, links and routers
in a simplified way, for the sake of clarity. From top to bottom, the boxes show:

1. the equipment available at the IBBT office (first two boxes, 200 nodes),

2. a similar yet enhanced set of nodes located in Zwijnaarde (boxes 3,4; 40 nodes),

3. 10 imec sensing nodes (cf. Section 2.4 of this document),

CREW - FP7 - GA No. 258301 D3.1

 24

4. 8 USRP cognitive radio platforms and the hardware needed to drive these components.

Figure 11: Overview of hardware available to experimenters in the IBBT w-iLab.t

CREW - FP7 - GA No. 258301 D3.1

 25

All of the above hardware may be used by experimenters to perform cognitive networking
experiments. However, the w-iLab.t offers more than just the hardware: a wide selection of software
tools is offered to help experimenters to define, run, and monitor their experiments. Furthermore,
functionality is in place to assist researchers in logging, visualizing and processing their results in real-
time or after the experiment.

Figure 12 shows a schematic overview of the functionality that is offered to the user who is interested
in using the nodes that are labelled (1) and (2) in the classification above. It is important to remember
that w-iLab.t offers the hardware (nodes) and tools: the behaviour of the nodes may be entirely
programmed by the experimenter. For example: each of the embedded PCs is equipped with 2 Wi-Fi
interfaces. On top of these embedded devices, an experimenter may install any set of drivers, protocols
and applications, meaning that, for example, an embedded PC may be configured purely as a server
(e.g. webserver, data collection server), or as a Wi-Fi access point (e.g. with cognitive protocols for
channel selection), or as a Wi-Fi client connecting to an access point (possibly using multiple Wi-Fi
interfaces), or as a gateway (e.g. to the sensor network, or to the backbone), or any other functionality
such a device might have. As such, the functionality of (task carried out by) the testbed is endless and
up to the imagination of the experimenter.

Figure 12: schematic overview of the functionality related to the nodes available to the experimenters

The remainder of this section offers a concise description of the most important functionalities, some
of which are highlighted in Figure 12. The additional functionalities not listed in the figure, are equally
relevant, with some of these specifically targeting the hardware listed above under (3) and (4).
Although this information will help experimenters to pinpoint what is possible when using the IBBT
infrastructure, in-depth information on how to use the functionality is not included in this document.
For information on how to access and/or modify the functionalities, and for further details on the

CREW - FP7 - GA No. 258301 D3.1

 26

hardware and software components (including datasheets, tutorials, and code examples), the reader of
this document is invited to the CREW portal at www.crew-project.eu. As the w-iLab.t is continuously
being updated and expanded, the portal will also always offer the most recent version of the available
equipment and services.

2.5.1 Install (custom) firmware, software, drivers, protocols on embedded PCs and
sensor nodes

The functionality included in Figure 12 includes the following. Experimenters developing cognitive
radio protocol stacks can make full use of the embedded PCs, sensor nodes, or a combination of these
devices. The experimenters may fully configure the Linux-based embedded platforms. This includes
installing their own applications, networking protocols, MAC layer protocols, kernel, and/or drivers.
The limitations related to the configurability of the embedded PC’s are basically the same as
experimenters would meet when installing a computer system on their desktops. Sensor nodes may be
flashed with custom firmware images. Tools are available to help experimenters to easily install their
solutions on top of a single, a selection of, or all nodes available in the testbed. Alternatively, users
may perform manual configurations, e.g. on the embedded PC’s via SSH login.

Also worth mentioning is the possibility to log results to a storage server, visualise results with a
“visualizer”, and analyse results with an “analyser”. Advanced functionality related to these functions
includes real-time interaction with the I/O pins available on the sensor nodes via an “environment
emulator”. This same environment emulator enables users to perform real-time power consumption
measurements of the sensor nodes, emulate battery levels, and add timestamps to logging information
as to guarantee time-synchronisation of the logging output of the sensor nodes and the testbed system.
Details are available on the CREW portal.

As can be seen in the figures, different technologies are available to experiment with, including Wi-Fi
based on the IEEE 802.11a/b/g/n standards, IEEE 802.15.4, and Bluetooth.

2.5.2 Use of the cognitive radio platforms: USRP hardware with 2.4 GHz ISM front-end
USRP devices are available in the Zwijnaarde testbed. The devices may be used by the experimenters.
Sample code will be provided. It is, for example, possible to install the IRIS software radio on top of
this hardware.

2.5.3 Use of the CREW benchmarking framework: reproducible environments and
performance comparison

The CREW benchmarking framework, as described in CREW deliverable D2.2 Section 3.5, is
operational inside the IBBT testbed. The benchmarking framework assists experimenters in their
experiments, by providing the means (i) to recreate repeatable wireless environments, and (ii) compare
results.

The repeatable wireless environments are a set of wireless devices, transmitting a predefined traffic or
interference pattern. The repeatability of these wireless settings is verified through repeated
experiments; these repeated experiments and analysis thereof are supported by the framework. For the
first open call, IBBT offers a repeatable home environment comprising a set of 802.15.4 based sensor
nodes, Wi-Fi access points and Wi-Fi stations. Experimenters may use this setting, or create similar or
completely new settings based on this provided scenario and can use the provided analysis tools to
verify the repeatability of the created environment. Details on the offered reproducible environment
are provided in CREW deliverable D4.1.

The benchmarking framework furthermore allows experimenters to reliably compare the performance
difference of different iterations of their cognitive solution. Comparing a given solution with a
completely different solution is also possible. A benchmarking API is offered to the experimenters.
This benchmarking API may be used by experimenters to let the benchmarking framework interact
with their own custom software / drivers / protocol stacks, once they are installed on the devices
offered by the w-iLab.t. The API is available for experimenters in two flavours, one for sensor nodes
as TinyOS modules, and one for the embedded PC’s as linux scripts. Both APIs offer similar

http://www.crew-project.eu/

CREW - FP7 - GA No. 258301 D3.1

 27

functionality, with specific extensions for the respective platforms. Details on the benchmarking
functionality can be found on the CREW portal.

2.5.4 Use of imec sensing agents
The imec sensing engines are integrated in the IBBT w-iLab.t. Users may use the information
collected by the sensing engines during their experiments, either as an external monitoring platform,
or, as a way to provide input parameters to their protocols. Details are available in Section 2.4 of this
document, and on the portal.

2.6 THALES Multi-antenna LTE detection procedure

2.6.1 Introduction
The goal of the detection procedure is to detect all the significant base stations surrounding the LTE
sensing equipment. However, the rather straightforward algorithms implemented in mobile terminals
do not allow detecting weak base stations. Multi-antenna receivers and smart antenna processing allow
increasing detection performance.

For the two use cases described in D2.3 (US13 “Reliable sensing of cellular systems” and US51
“Impact of cognitive networking on a cellular primary system”) sharp detection must be performed.
Indeed, in a CR system, the imposed sensing sensitivity is classically very high (for example, the FCC
imposed TV bands devices to be capable of sensing analogue TV signals, digital TV signals and
wireless microphone signals at a level of -114 dBm within defined receiver bandwidths [3]).
Moreover, in a metrology approach, it can be shown that low base stations may impact in a significant
way the mobile performance and thus need to be detected by a reliable tool. It is proved that these
stations with a SIR down to -15 dB should be detected.

In section 2.6.2.5 the spatial detector is described as well as the two-step synchronization procedure
considered the standard

• Detection of the Primary Synchronization Signal, acquisition of the slot synchronization and
identification of the cell identity within the cell identity group,

• Detection of the Secondary Synchronization Signal, acquisition of the frame synchronization
and identification of the physical layer identity of the cell, the CP length and the duplex mode.

2.6.2 Reference-based multi-antenna detection

2.6.2.1 Mathematical notations and signal modeling
In this section, we present the multi-antenna reference-based algorithm used to detect the PSS and the
SSS broadcast by the significant base stations. It consists of evaluating at each time position, relevant
statistics to be compared to a given threshold.

Let us first give some algorithmic notations.

The discrete time signal received at time n, on antenna m is written 𝑥(𝑚)[𝑛]. Thus, the received
snapshot vector on the antenna array can be written as:

x[𝑛] = �
𝑥(1)[𝑛]

⋮
𝑥(𝑀)[𝑛]

� Eq. 2-1

M being the total number of antennas of the array.

The presence or the absence of the synchronization signal at time n can be formulated as the following
composite hypothesis-testing problem:

CREW - FP7 - GA No. 258301 D3.1

 28

• Hypothesis H1: Presence of the synchronization signal

The discrete time signal x can be written as:

x[𝑛 + 𝑘] = h𝑑[𝑘] + � hp
𝑝≠0

𝑑[𝑘 − 𝑝] + n[𝑛 + 𝑘], for 𝑘 = 0, … ,𝑁 − 1 Eq. 2-2

• Hypothesis H0: Absence of the synchronization signal

x[𝑛 + 𝑘] = n[𝑛 + 𝑘], for 𝑘 = 0, … ,𝑁 − 1 Eq. 2-3

Here:

• N is the length of the synchronization sequence,

• n corresponds to the current time index at which the two hypotheses have to be tested,

• 𝑑[𝑘] is the synchronization sequence,

• h + ∑ hp𝑝≠0 𝑧−𝑝 is the unknown transfer function of the discrete time equivalent propagation
channels between the transmitter and the M antenna of the receiver,

• n[𝑛] represents the contribution of the background noise and of the other active cells.

The two hypotheses are composite in the sense that the joint probability distribution of the sequence
�x[𝑛 + 𝑘],𝑘 = 0, … ,𝑁 − 1� depends on several unknown parameters. It is thus impossible to derive
and implement optimum detection procedures in the most general case. In order to motivate the
following sub-optimum algorithms, we first address the case where the noise n[𝑛] is temporally white
and the transfer function h + ∑ hp𝑝≠0 𝑧−𝑝 is reduced to the vector h, which implicitly implies the
existence of a single path propagation channel between each active base station and the receiver. In
this context, it is possible to derive the maximum likelihood ratio test whose performance will be
studied in the following. This test is called “The optimal spatial detector” in the following. When the
propagation channels between the active base stations and the LTE sensing equipment are frequency
selective, the above assumption is not motivated. We thus suggest a heuristic modification of the
optimal spatial detector, as shown below, to obtain better performance.

2.6.2.2 Optimal spatial detector
We consider the following simplified hypotheses testing problem:

Hypothesis H1:

x[𝑛 + 𝑘] = h𝑑[𝑘] + n[𝑛 + 𝑘], for 𝑘 = 0, … ,𝑁 − 1 Eq. 2-4

Hypothesis H0:

x[𝑛 + 𝑘] = n[𝑛 + 𝑘], for 𝑘 = 0, … ,𝑁 − 1 Eq. 2-5

where n[𝑛] is assumed to be temporally white, but possibly spatially correlated with an unknown
covariance matrix. In order to derive a relevant test, we propose to use the maximum likelihood
methodology. The likelihood ratio can be written:

𝑐(𝑛) = �
𝑑𝑒𝑡(𝐑0)
𝑑𝑒𝑡(𝐑1)�

𝑁 exp �−∑ �x[𝑛 + 𝑘] − h𝑑[𝑘]�𝑁−1
𝑘=0 𝐑1−1�x[𝑛 + 𝑘]− h𝑑[𝑘]�𝐻�

exp�−∑ x[𝑛 + 𝑘]𝑁−1
𝑘=0 𝐑0

−1x𝐻[𝑛 + 𝑘]�
 Eq. 2-6

CREW - FP7 - GA No. 258301 D3.1

 29

where 𝐑0 and 𝐑1 are the covariance matrices of the noise under the hypotheses H0 and H1. These two
unknown matrices as well as the vector h are nuisance parameters that have to be estimated under each
hypothesis in the maximum likelihood sense:

After some easy calculations, we get that under H0:

𝐑�0 = 𝐑�𝑥𝑥(𝑛) Eq. 2-7

while under H1:

h� =
1

‖𝑑‖²
r�𝑥𝑑(𝑛) Eq. 2-8

𝐑�1 = 𝐑�𝑥𝑥(𝑛) −
1

‖𝑑‖²
r�𝑥𝑑(𝑛)r�𝑥𝑑𝐻 (𝑛)

Eq. 2-9

with:

‖𝑑‖² = � |𝑑[𝑘]|
𝑁−1

𝑘=0

² Eq. 2-10

r�𝑥𝑑(𝑛) = � x
𝑁−1

𝑘=0

[𝑛 + 𝑘]𝑑∗[𝑘]
Eq. 2-11

𝐑�𝑥𝑥(𝑛) = � x[𝑛 + 𝑘]x𝐻[𝑛 + 𝑘]
𝑁−1

𝑘=0

Eq. 2-12

Replacing into Eq. 2-6 the vector h and the matrices 𝐑0 and 𝐑1 by their estimates, we get, after some
calculations that the maximum likelihood ratio is given by:

𝑐(𝑛) =
r�𝑥𝑑𝐻 (𝑛)𝐑�𝑥𝑥−1(𝑛)r�𝑥𝑑(𝑛)

‖𝑑‖²
 Eq. 2-13

It is interesting to remark that Eq. 2-13 can be interpreted as the correlation of the synchronization
sequence with the output of the spatial filter r�𝑥𝑑𝐻 (𝑛)𝐑�𝑥𝑥−1(𝑛) driven by the received signal x. Indeed,
𝑐(𝑛) can be written as:

𝑐(𝑛) =
1

‖𝑑‖²
 ��r�𝑥𝑑𝐻 (𝑛)𝐑�𝑥𝑥−1(𝑛)x[𝑛 + 𝑘]�
𝑁−1

𝑘=0

𝑑∗[𝑘] Eq. 2-14

It is worth mentioning that under hypothesis H1, r�𝑥𝑑𝐻 (𝑛)𝐑�𝑥𝑥−1(𝑛) can be interpreted as an estimate of the
so-called spatial Wiener filter defined as the minimum variance estimate of 𝑑[𝑘] based on the
observation x[𝑛 + 𝑘]. Therefore, the present detector evaluates under hypothesis H1 the optimum
spatial mean-square estimate of sequence 𝑑[𝑘], and checks the relevance of the hypothesis by
correlating this estimate with the actual sequence.

In order to improve the performance of the above test, we propose to use the periodicity of the
synchronization sequences. To do so, the above hypothesis-testing problem has to be modified as
follows:

Hypothesis H1:

x�𝑛 + 𝑚𝑇𝑓𝑟𝑎𝑚𝑒� = h𝑑[𝑘] + n�𝑛 + 𝑚𝑇𝑓𝑟𝑎𝑚𝑒�, for 𝑚 = 0, … ,𝑁𝑓𝑟𝑎𝑚𝑒 − 1 Eq. 2-15

Hypothesis H0:

CREW - FP7 - GA No. 258301 D3.1

 30

x�𝑛 + 𝑚𝑇𝑓𝑟𝑎𝑚𝑒� = n�𝑛 + 𝑚𝑇𝑓𝑟𝑎𝑚𝑒�, for 𝑚 = 0, … ,𝑁𝑓𝑟𝑎𝑚𝑒 − 1 Eq. 2-16

Where:

• 𝑁𝑓𝑟𝑎𝑚𝑒 is the number of observed frames,

• 𝑇𝑓𝑟𝑎𝑚𝑒 is the duration of a frame,

• h, 𝐑0 and 𝐑1 are assumed to be frame varying (i.e. depending on m).

The maximum likelihood test consists in comparing to a threshold the quantity:

𝑐̃(𝑛) =
1

𝑁𝑓𝑟𝑎𝑚𝑒
 � −ln �1 − 𝑐�𝑛 + 𝑚𝑇𝑓𝑟𝑎𝑚𝑒��

𝑁𝑓𝑟𝑎𝑚𝑒−1

𝑚=0

 Eq. 2-17

If all the criteria 𝑐�𝑛 +𝑚𝑇𝑓𝑟𝑎𝑚𝑒� are small compared to 1, this test can be reduced to:

𝑐(𝑛) =
1

𝑁𝑓𝑟𝑎𝑚𝑒
 � 𝑐�𝑛 + 𝑚𝑇𝑓𝑟𝑎𝑚𝑒�

𝑁𝑓𝑟𝑎𝑚𝑒−1

𝑚=0

 Eq. 2-18

In the following, we will call “instantaneous criterion” the criterion of Eq. 2-13 and “integrated
criterion” the criterion of Eq. 2-18 . We will show in the following that the integrated criterion
provides an averaging effect, improving the performance of the test.

2.6.2.3 Asymptotic value of the criterion at the synchronization positions
At a synchronization position, it is possible to calculate the value of the criterion, assuming that the
matrix 𝐑𝑥𝑥 and the vector r𝑥𝑑 are perfectly estimated. Indeed, at the synchronization position:

𝐑𝑥𝑥 = 𝜋𝑑h h𝐻 + 𝐑1 Eq. 2-19

and

r𝑥𝑑 = 𝜋𝑑h Eq. 2-20

where 𝜋𝑑 is the power of the sequence 𝑑[𝑘].

The instantaneous criterion becomes:

𝑐(𝑛) =
𝜋𝑑h𝐻R1

−1h
1 + 𝜋𝑑h𝐻R1

−1h
=

SINRSWF

1 + SINRSWF
 Eq. 2-21

where the quantity SINRSWF = 𝜋𝑑h𝐻R1
−1h is the signal to noise plus interference ratio at the Spatial

Wiener Filter output.

2.6.2.4 False alarm probability
The false alarm probability corresponding to a threshold S is the probability that the criterion 𝑐(𝑛) is
higher than S for a time position n which does not correspond to a synchronization position. Under the
assumption that the noise n[𝑛] is temporally white, it is possible to evaluate in closed form the
probability distribution of 𝑐(𝑛) under the null hypothesis. Indeed, according to [2], under the null
hypothesis, the probability distribution of 𝑐(𝑛) is equal to:

𝑝(𝑐) =
(𝑁 − 1)!

(𝑀− 1)! (𝑁 −𝑀 − 1)!
 𝑐𝑀−1(1− 𝑐)𝑁−𝑀−1 Eq. 2-22

CREW - FP7 - GA No. 258301 D3.1

 31

where M represents the number of antennas of the array.

The false alarm probability can then be computed as:

PFAc(𝑆) = � 𝑝(𝑐)d𝑐
1

0
 Eq. 2-23

As for the integrated criterion, an approximated analytical formula giving the false alarm probability
can still be derived by remarking that the probability distribution in Eq. 2-22 can be approximated by:

𝑝(𝑐) =
𝑁𝑀

(𝑀− 1)!
𝑐𝑀−1𝑒−𝑁𝑐 Eq. 2-24

which corresponds to a χ2 distribution with 2M degrees of freedom and an expectation equal to . Then
the distribution of the mean of independent instantaneous criteria can easily be deduced as:

𝑝(𝑐) =
𝑁𝑀

(𝑀 − 1)!
𝑐𝑀−1𝑒−𝑁𝑐 Eq. 2-25

Then we get the false alarm probability for the integrated criterion:

PFAc(𝑆) = � 𝑝𝑁𝑓𝑟𝑎𝑚𝑒(𝑐)d𝑐
1

0
 Eq. 2-26

The detection of the PSS is achieved by computing the instantaneous synchronization criterion
described in Eq. 2-13 at each time position. If, as usual, the signal is observed over several frames, it is
better to take advantage of the PSS periodicity using the Eq. 2-18 integrated criterion.

2.6.2.5 Application to LTE standard
On the downlink, LTE is an OFDMA (Orthogonal Frequency Division Multiple Access) system with
an inter-carrier spacing of 15 kHz or 7.5 kHz. In this document only the 15 kHz case will be
studied. Depending on the target service, the data rate can be adjusted by changing the bandwidth as
specified in Table 3.

Table 3 : LTE downlink characteristics depending on channel bandwidth

 Channel bandwidth
[MHz] 1.4 3 5 10 15 20

FFT size 128 256 512 1024 1536 2048

Number of subcarriers
(excluding DC) 72 180 300 600 900 1200

Occupied bandwidth
[MHz] 1.095 2.715 4.515 9.015 13.515 18.015

Maximum data rate
[Mbps] 5.76 14.4 24.0 48.0 72.0 96.0

Sampling rate [Mcps] 1.92 3.84 7.68 15.36 23.04 30.72

The OFDM symbols are gathered in slots of 0.5 ms, while a frame consists of 20 slots (10 ms). The
number of OFDM symbols in a slot depends on the length of the CP (Cyclic Prefix). Indeed, two
modes are possible depending on the propagation condition:

CREW - FP7 - GA No. 258301 D3.1

 32

• The normal CP mode in which a slot contains 7 OFDM symbols (the length of the first OFDM
symbols CP is longer in order to keep the slot duration constant).

• The extended CP mode in which a slot contains 6 OFDM symbols.

• The frame structure is summarized in Figure 13, in the 5 MHz bandwidth case.

CP

CP CP CP CP CP CP CP

CP CP CP CP CP

LTE slot : 0.5 ms
3840 samples (for 5MHz bandwidth)

Normal CP

Extended CP

40 samples 36 samples 512 samples OFDM symbol
548 samples

First OFDM symbol
552 samples

128 samples 512 samples OFDM symbol
640 samples

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LTE frame : 10 ms
20 slots

76800 samples (for 5MHz bandwidth)

1 slot

Figure 13: LTE frame structure in the 5 MHz bandwidth case

Synchronization sequences

In order for the UE to get synchronized with the LTE network, two synchronization sequences are
broadcast by the BTS:

• The Primary Synchronization Signal (PSS)

• The Secondary Synchronization Signal (SSS)

The detection of these two signals not only enables time synchronization but also provides the
physical layer identity of the cell and the cyclic prefix length, and informs the UE whether the cell
uses FDD or TDD.

The PSS and SSS structure in time is shown in Figure 14 in the FDD case and in Figure 15 in the TDD
case. Both synchronization signals are transmitted twice per frame. For the PSS, the same sequence is
transmitted each time. For the SSS, a different sequence is sent on slot 1 and 11, in the FDD case (or
on slot 2 and 12 on the TDD case). The sequences that are transmitted for the PSS and SSS in a given
cell are used to indicate the physical layer cell identity. There are 504 physical layer cell identities split
into 168 groups of 3 identities. Three different PSS are used to indicate the cell identity within the
group and 168 SSS are used to indicate the identity of the group. The goals of the synchronization
signals are thus:

• For the PSS, to acquire the slot timing synchronization and the cell identity within the group.
Three different PSS have to be tested.

• For the SSS, to acquire the frame timing synchronization, the identity of the group and
therefore the physical layer identity of the cell, the CP length and the duplex mode. 168
different SSS have to be tested on 8 different timing positions (2 for the CP length × 2 for the
duplex mode × 2 for the frame synchronization).

CREW - FP7 - GA No. 258301 D3.1

 33

1 slot = 0.5 ms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 frame = 10 ms = 20 slots

PSS SSS

1 2 3 4 5 6 7

1 2 3 4 5 6

Normal CP

Extended CP

Figure 14: PSS and SSS frame structure in the FDD case

1 slot = 0.5 ms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 frame = 10 ms = 20 slots

PSS SSS

1 2 3 4 5 6 7

1 2 3 4 5 6

Normal CP

Extended CP

1 2 3 4 5 6 7

1 2 3 4 5 6

Figure 15: PSS and SSS frame structure in the TDD case

In the frequency domain, the PSS and SSS are transmitted on the 62 central subcarriers allowing the
synchronization to be performed independently of the signal bandwidth.

The detection of the primary synchronization signal is achieved by computing the criterion described
in Eq. 2-18 at each time position over half a frame (which is the period of the PSS). Three criteria
must be computed with three different PSS corresponding to the cell identity within the group. The
three criteria are then compared to a threshold. Each position for which one of the criteria is greater
than the threshold is considered as a possible detection of a primary synchronization sequence
transmitted by a base station. This allows to detect the most powerful stations and to get the slot
synchronization and the cell identity within the group.

The key point is here to choose the value of the threshold: it has to be chosen in order to achieve an
acceptable false alarm rate, while providing satisfying probability detection. In general, the Eq. 2-26 is
not relevant because it is based on very strong assumptions, which are not verified in practice.
Therefore, we propose in the following to evaluate the threshold by means of Monte-Carlo
simulations.

CREW - FP7 - GA No. 258301 D3.1

 34

The detection of the secondary synchronization sequence is achieved using the same algorithm for
each time position at which a PSS has been detected. For each time position, 168 different SSS have to
be tested, in order to identify the identity of the group. Each SSS is tested on 8 different timing
positions (2 for CP length deduction × 2 for duplex mode deduction × 2 for frame synchronization
deduction). On the 168×8 criterion values, the maximal one is taken. No thresholding is applied in this
step.

Moreover, it is at this step that the multiple paths are handled. Indeed, during the detection of the PSS,
two time positions above the threshold can correspond to two paths coming from the same base
station. If after the secondary synchronization, we observe that two possible detected base stations
have the same physical layer cell identity, we will conclude that it is in fact two different paths coming
from the same base station.

CREW - FP7 - GA No. 258301 D3.1

 35

3 Common Data Collection/Storage Methodology Design

3.1 Introduction
Many usage scenarios that take place can be 'recorded'. In our federation data recorded in one testbed
will be usable in other testbeds to support emulated usage scenarios (e.g. primary user data recorded in
testbed A feeds into a sensing device in testbed B). To this end this task will define data of interest,
common structures for storing data and create a federation database for storage of any collections
made. The availability of this 'fluid' data will also be of key interest in the benchmarking processes in
WP4 as it will enable us to compare and contrast how different approaches deal with given data sets.
Making the data openly available in itself is also of huge importance as the data can be used to
validate theoretical ideas or indeed as actual input to systems being tested, emulated, or simulated.
Whenever possible, we will contribute collected data to open repositories. FARAMIR plans to build
environmental maps of primary users and the CREW data can potential contribute to this. There is the
potential to also contribute outside the EU to such repositories as CRAWDAD, a Community
Resource for Archiving Wireless Data At Dartmouth, in the USA. To underpin this work, data logging
facilities will need to be added to some testbeds. Task 4.4 in WP4 will also have an impact here.

3.2 Background on IEEE 1900.6
The IEEE 1900.6 standard "defines the information exchange between spectrum sensors and their
clients in radio communication systems. The logical interface and supporting data structures used for
information exchange are defined abstractly without constraining the sensing technology, client
design, or data link between the sensor and client." [4] For the definition of common data formats in
the CREW project, especially the definition of supporting data structures is of interest.

The scope of the 1900.6 standard is limited to the definition of spectrum sensing related parameters
and data structures. However, since a significant part of the data relevant for the CREW common data
format is also spectrum sensing related, we decided to use the 1900.6 definitions where applicable and
extend the available data structures where necessary.

Clause 6 "Information description" of the IEEE 1900.6 standard [4] contains the information relevant
to the CREW common data format. Here also a list and definitions of the defined data structures can
be found. Within the CREW common data format task we extend the 1900.6 definitions with the
additional data structures required. Such additional data structures are, e.g., related to meta
information, experiment specification, and non-sensing related parameters such as throughput,
bit/frame error rates, etc.

3.3 Definition of the data of interest
The results of an experiment should be stored in such a way that it is possible to utilize the outcome
further for our CREW-specific goals (analysis & benchmarking, performance comparison of different
CR equipment, "replaying" etc.). To structure this process we group all relevant information into the
following 3 categories 1. "experiment abstract", 2. "meta-information" and 3. "experiment-trace(s)".

Typically experimenters make several iterations of an experiment and obtain several traces. Some of
these iterations may have involved slight changes in the experimental setup. These changes are often
not enough to justify calling it a new experiment. Our specification allows us to define a common set
of meta-information (the devices involved, the location, etc.) which can be “refined” for each
individual trace (iteration). Specifically, the experimenter defines a template (in category 2) which is
valid, unless it is overwritten in the specification of an individual trace (in category 3).

The suggested file format for experiment specification and meta-information is JSON, which can be
transcoded to XML but is easier human-readable. We plan to offer a web interface with forms that the
user fills in and produce the JSON representation automatically (this would likely be implementation
work for CREW Year 2).

CREW - FP7 - GA No. 258301 D3.1

 36

Measurement traces may be in a proprietary format, as long as they easily are convertible to CSV
(with open processing tools). We recommend Matlab mat-files as our preferred file format, as the
“Experiment abstract and meta-information” of an experiment can then also be added in each file for
convenience. For this we plan to define Matlab structures (a template) to be used and provide a tool
that parses the JSON representation into Matlab structures, so a user will only need to enter the
information once. If the trace file is too big it can be split into parts, which has to be explained.

In the following we present a template for our envisioned data structure with additional “best practice”
comments. Examples for data from different internal usage scenarios of the CREW project can be
found in Section 3.4. Examples using the json format can be found in Appendix B: BEE2 example
.json.

1 Experiment Abstract: This is the structured description of the entire experiment. It
provides all basic information for understanding how the experiment was performed and
who did it. This information is valid for the entire experiment set.

1.1 Title: A few words with the core information.
1.2 Unique CREW Tag: The tag for further references to other CREW experiments or

publications.

1.3 Author: List of all experiment authors.

1.3.1 Name

1.3.2 Email

1.3.3 Address

1.3.4 Phone

1.4 Release Date: The release date of the experiment. It should be kept as specified in ISO
8601.

1.5 Experiment summary: Detailed textual description of the experiment. What was done,
why, what should be expected. How many experiment iterations were performed…

1.6 Collection methodology: Textual description of how the data was collected.

1.7 Further documentation:

1.7.1 Description: Short description of the related documentation.

1.7.2 Bibtex: The list of bibtex entires for the related publications.

1.8 Related experiments: The list of the related experiments in the CREW database. For
example if there are new or previous experiments based on this, experiments closely
related to each other. Here also information on the relation should be added, e.g.
“repetition of experiment on a larger scale”, or “repetition due to problems in previous
experiments”

1.9 Notes: Case specific experiment notes. For example problems with data that was
discovered during evaluation or known limitations for further usage of the data

2 Meta-information: Meta-information is “the information required for describing,
understanding, and evaluating information”. This is very well described in IEEE 1900.6
in Section 5.3.1 and in Table on page 18. To give IEEE 1900.6 support it is necessary to
provide support for all parameters defined there. There is also an interface for retrieving
data from sensor itself or Data Archive (DA from IEEE 1900.6)

CREW - FP7 - GA No. 258301 D3.1

 37

The information in this category may be refined in category 3 with details per individual
trace.

2.1 Device: Detailed description of the device types involved in the experiment.

2.1.1 Name: Device name

2.1.2 Description: Short textual description of the used device

2.1.3 Datasheets: Links to the device datasheets. The specific datasheet information is also
required for access in IEEE 1900.6.

2.1.4 Software: Specific software (hopefully with source code) used for measurements. For
example custom USRP code.

2.1.4.1 Description: What kind of software was used, what’s the execution environment, etc.

2.1.4.2 Operating system: The operating system used on the device. It is possible that
hardware supports multiple operating systems, firmware version, in such case it is
necessary to specify which one was used.

2.1.4.3 Application Name: Names of the applications used.

2.1.4.4 Code: References to the source code to download.

2.2 Location: A description of the area where the measurement was performed. Was it
indoors/outdoors, location map, placement of the devices in the building, etc.

2.2.1 Layout: Arrangement of devices and other objects in the environment.

2.2.2 Mobility: Mobility information of devices or objects in the environment.

2.3 Time: general date / time range, will be refined in category 3 per trace.

2.4 Radio Frequency

2.4.1 Operating range: The frequency range on which the devices are operating. For
example 2.4 GHz ISM band.

2.4.2 Interference sources: Possible sources of interference.

2.5 Parameters: Definition of parameters that can be changed between different iterations of
the experiment.

2.5.1 Description

2.5.2 Name: Name of the parameters. For further usage in iteration description.

2.5.3 Unit: Unit of measurement for the parameter.

2.6 Trace description

2.6.1 Description: Detailed description of the generated trace files. It is left open in which
format the actual measurement trace is stored as long as it is sufficiently well
described and can be converted to CSV, which we consider the baseline. We also
recommend other formats, such as matlab timeseries objects.

2.6.2 Collected metrics: List of the types of collected data. For example signal power, time,
location.

2.6.2.1 Name

2.6.2.2 Unit of Measurement: The unit used for data storage. For example Hz, dBm. The
measurement units (frequency, power etc.) are described in IEEE 1900.6 in Section

CREW - FP7 - GA No. 258301 D3.1

 38

6.2 on page 73 and should be referenced here)

2.6.2.3 Accuracy: Information about device accuracy for this metric. Should be extracted
from datasheet.

2.6.3 Processing tools: Conversion, evaluation, etc.

2.7 Signal generation: If any how the signal was generated, trace, source files.

2.7.1 Description: Description how signal was generated.

2.7.2 Trace: Trace file of the generated file suitable for replaying the experiment.

3 Experiment Iterations: Each trace may include sensing data, but may also cover other
parameters if they were dynamic and captured during the experiment (time or location
data). A measurement trace must conform to the specification above in category 1. It may
deviate from the specification in category 2, but then it must by explicitly stated below in
which ways it differs, i.e. the specification for an individual trace can
overwrite/refine/augment any of the existing fields described in category 2)

3.1 Description: A brief description/relation to the other traces, e.g. this was the nth iteration
of the experiment.

3.2 Time: The actual start and end time of this experiment trace.

3.2.1 Start time

3.2.2 End time

3.3 Parameters: Values of the parameters defined in category 2.

3.3.1 Name

3.3.2 Value

3.4 Trace-file: List of trace files containing the traces in the format described in 2.5.3

3.5 If necessary the fields from category 2 can be redefined here. For example the location
information if changed during the experiment. The change can be represented here
without the need of creation of the new description.

3.4 Examples

3.4.1 BAN Example
1 Experiment Abstract
1.1 Title: Urban RF noise measurements with a IEEE 802.15.4 Body Area Network

1.2 Unique CREW Tag: 2011-1-Hauer

1.3 Author(s): Jan Hauer

1.3.1 Contact information : hauer@tkn.tu-berlin.de, Einsteinufer 25, 10587 Berlin, Germany

1.4 Release Date: 2011.06.25 I would suggest using uniform date time encoding across the
entire CREW data: here, in 2.3 and in measurements. My suggestion would be UTC:
1994-11-05T13:15:30Z (see here for more http://www.w3.org/TR/NOTE-datetime)

1.5 Experiment summary: 2.4 GHz RF noise measurements on 3 shimmer2r sensor nodes
attached to a person, who was walking through a central shopping district in Berlin,
Germany. The subject was walking for 30 minutes, we monitored RSSI on all 16 IEEE
802.15.4 channels (2400, 2405, … MHz) in a round-robin fashion. Because we were

mailto:hauer@tkn.tu-berlin.de
http://www.w3.org/TR/NOTE-datetime

CREW - FP7 - GA No. 258301 D3.1

 39

monitoring the unlicensed 2.4 GHz band there are likely many signals from different
devices. Our setup is completely passive, simply recording RF noise and location data.

1.6 Collection methodology: RF noise samples are collected by periodically reading the
RSSI register of the shimmer2r radio (CC2420 radio). An RSSI reading represents the
average signal power over 192 microseconds in dBm. Once an RSSI reading has been
obtained, we switch to the next channel (2400->2405->…->2480->2400->2405 MHz,
etc.) and collect the next sample. All RSSI values are stored on an SD card and
extracted after the experiment. Location data is collected via a GPS-daughterboard,
which allows to obtain GPS coordinates and time once per second. GPS location and
time data is also stored on the SD card.

1.7 Further documentation : none
1.8 Related experiments: none
1.9 Notes: During the first 30 seconds of an experiment the GPS data is unavailable, because

the GPS needs time for calibration.

2 Meta-information
2.1 Devices
2.1.1 Datasheets:

• Shimmer2r platform: http://www.shimmer-research.com/wp-
content/uploads/2011/06/Shimmer-2R-Technical-Data-Sheet.pdf

• GPS board: http://www.shimmer-research.com/wp-content/uploads/2011/02/GPS-
Spec-Sheet.pdf

• CC2420 Radio: http://www.ti.com/lit/gpn/cc2420
2.1.2 Software

2.1.2.1 Description: maybe it would be nice to have the information here a little bit more
structured

2.1.2.2 Operating system: TinyOS 2
2.1.2.3 Driver: shimmer2r GPS vX.X
2.1.2.4 Application: ApplicationName
2.1.2.5 Code: Language: nesC URI: http://github.com/XXXX
2.2 Space

2.2.1 Layout: Sensor nodes are attached to right hand and left foot of the subject as shown
in the following schematic:

http://www.shimmer-research.com/wp-content/uploads/2011/06/Shimmer-2R-Technical-Data-Sheet.pdf
http://www.shimmer-research.com/wp-content/uploads/2011/06/Shimmer-2R-Technical-Data-Sheet.pdf
http://www.shimmer-research.com/wp-content/uploads/2011/02/GPS-Spec-Sheet.pdf
http://www.shimmer-research.com/wp-content/uploads/2011/02/GPS-Spec-Sheet.pdf
http://www.ti.com/lit/gpn/cc2420

CREW - FP7 - GA No. 258301 D3.1

 40

The subject was walking on the pedestrian path from Kurfuerstendamm 192, 10879
Berlin, Germany, to Einsteinufer 25, 10551 Berlin, taking the route as shown in the
following picture:

It was a typical urban main street environment with cars passing frequently and other
pedestrians walking on the pedestrian path. There were houses next to the streets, a
mix between apartment building and office buildings. The path can be seen in google-
streetview:
http://maps.google.de/maps?saddr=Kurf%C3%BCrstendamm,+Charlottenburg+10789
+Berlin&daddr=Einsteinufer+26,+10587+Berlin&hl=de&ie=UTF8&ll=52.515646,13.
326845&spn=0.019482,0.055661&sll=52.501646,13.311052&sspn=0.038716,0.11132
2&geocode=Fd0gIQMdUVPLACn3VCVx_1CoRzFZUEg_VssRdQ%3BFRlUIQMd
HlnLACkxTgW3BFGoRzG28WgySvDIFg&mra=iwd&z=15&layer=c&cbll=52.5159
78,13.326451&panoid=8GDeVURfbqcbmeSuxI1aAQ&cbp=12,332.11,,0,13.95

2.2.2 Mobility: could be Fixed, Mobile or Fixed and Mobile. Depending on the case, Speed
could be 0 km/h (Stationary), 4 km/h (human walking speed), etc. This would again
bring in a little more structure which could further be used to link to process
vocabularies for describing experiments.Execution:

Iteration 1: StartTime: 2011-05-22T17:15:00Z EndTime: XXX DurationTime: 785msec

Iteration 2: StartTime: 2011-05-22T18:15:00Z EndTime: YYY DurationTime: 900msec

2.3 RF Frequency

2.3.1 Operating range(s): 2.4 GHz ISM Band, 2400 – 2483 MHz
2.3.2 Interference sources: There was likely uncontrolled interference from various 2.4 GHz

band devices. Measuring the power of their signal was a main goal of the experiments.
2.4 Trace description

2.4.1 Collected metrics

2.4.1.1 RF Power

http://maps.google.de/maps?saddr=Kurfürstendamm,+Charlottenburg+10789+Berlin&daddr=Einsteinufer+26,+10587+Berlin&hl=de&ie=UTF8&ll=52.515646,13.326845&spn=0.019482,0.055661&sll=52.501646,13.311052&sspn=0.038716,0.111322&geocode=Fd0gIQMdUVPLACn3VCVx_1CoRzFZUEg_VssRdQ%3BFRlUIQMdHlnLACkxTgW3BFGoRzG28WgySvDIFg&mra=iwd&z=15&layer=c&cbll=52.515978,13.326451&panoid=8GDeVURfbqcbmeSuxI1aAQ&cbp=12,332.11,,0,13.95
http://maps.google.de/maps?saddr=Kurfürstendamm,+Charlottenburg+10789+Berlin&daddr=Einsteinufer+26,+10587+Berlin&hl=de&ie=UTF8&ll=52.515646,13.326845&spn=0.019482,0.055661&sll=52.501646,13.311052&sspn=0.038716,0.111322&geocode=Fd0gIQMdUVPLACn3VCVx_1CoRzFZUEg_VssRdQ%3BFRlUIQMdHlnLACkxTgW3BFGoRzG28WgySvDIFg&mra=iwd&z=15&layer=c&cbll=52.515978,13.326451&panoid=8GDeVURfbqcbmeSuxI1aAQ&cbp=12,332.11,,0,13.95
http://maps.google.de/maps?saddr=Kurfürstendamm,+Charlottenburg+10789+Berlin&daddr=Einsteinufer+26,+10587+Berlin&hl=de&ie=UTF8&ll=52.515646,13.326845&spn=0.019482,0.055661&sll=52.501646,13.311052&sspn=0.038716,0.111322&geocode=Fd0gIQMdUVPLACn3VCVx_1CoRzFZUEg_VssRdQ%3BFRlUIQMdHlnLACkxTgW3BFGoRzG28WgySvDIFg&mra=iwd&z=15&layer=c&cbll=52.515978,13.326451&panoid=8GDeVURfbqcbmeSuxI1aAQ&cbp=12,332.11,,0,13.95
http://maps.google.de/maps?saddr=Kurfürstendamm,+Charlottenburg+10789+Berlin&daddr=Einsteinufer+26,+10587+Berlin&hl=de&ie=UTF8&ll=52.515646,13.326845&spn=0.019482,0.055661&sll=52.501646,13.311052&sspn=0.038716,0.111322&geocode=Fd0gIQMdUVPLACn3VCVx_1CoRzFZUEg_VssRdQ%3BFRlUIQMdHlnLACkxTgW3BFGoRzG28WgySvDIFg&mra=iwd&z=15&layer=c&cbll=52.515978,13.326451&panoid=8GDeVURfbqcbmeSuxI1aAQ&cbp=12,332.11,,0,13.95
http://maps.google.de/maps?saddr=Kurfürstendamm,+Charlottenburg+10789+Berlin&daddr=Einsteinufer+26,+10587+Berlin&hl=de&ie=UTF8&ll=52.515646,13.326845&spn=0.019482,0.055661&sll=52.501646,13.311052&sspn=0.038716,0.111322&geocode=Fd0gIQMdUVPLACn3VCVx_1CoRzFZUEg_VssRdQ%3BFRlUIQMdHlnLACkxTgW3BFGoRzG28WgySvDIFg&mra=iwd&z=15&layer=c&cbll=52.515978,13.326451&panoid=8GDeVURfbqcbmeSuxI1aAQ&cbp=12,332.11,,0,13.95
http://maps.google.de/maps?saddr=Kurfürstendamm,+Charlottenburg+10789+Berlin&daddr=Einsteinufer+26,+10587+Berlin&hl=de&ie=UTF8&ll=52.515646,13.326845&spn=0.019482,0.055661&sll=52.501646,13.311052&sspn=0.038716,0.111322&geocode=Fd0gIQMdUVPLACn3VCVx_1CoRzFZUEg_VssRdQ%3BFRlUIQMdHlnLACkxTgW3BFGoRzG28WgySvDIFg&mra=iwd&z=15&layer=c&cbll=52.515978,13.326451&panoid=8GDeVURfbqcbmeSuxI1aAQ&cbp=12,332.11,,0,13.95

CREW - FP7 - GA No. 258301 D3.1

 41

2.4.1.1.1 on one of 16 IEEE 802.15.4 channels averaged over 192us
2.4.1.1.2 UoM: dBm
2.4.1.1.3 +- 6 dB (RSSI accuracy) datasheet
2.4.1.2 Time (GPS time)
2.4.1.2.1 in unix time + microseconds
2.4.1.2.2 +-40 ppm accuracy
2.4.1.3 Location
2.4.1.3.1 GPS coordinates
2.4.1.3.2 +- 5m (GPS accuracy)
2.4.2 Format: each experiment corresponds to two standard matlab timeseries objects with

the following properties (timeseries struct members):

a)

• Name: 'RSSI on node in right hand'

• Time: [nx1 double]

• TimeInfo: [1x1 tsdata.timemetadata]
o Units: seconds.microseconds

• Data: [nx1 double]

• DataInfo: [1x1 tsdata.datametadata]

o Units: ”dBm”

b)

• Name: 'RSSI on node on left foot'

• Time: [mx1 double]

• TimeInfo: [1x1 tsdata.timemetadata]
o Units: seconds.microseconds

• Data: [mx1 double]

• DataInfo: [1x1 tsdata.datametadata]
o Units: ”dBm”

c)

• Name: ‘GPS Location’

• Time: [nx1 double]

• TimeInfo: [1x1 tsdata.timemetadata]
o Units: seconds.microseconds

• Data: [nx1 double]

• DataInfo: [1x1 tsdata.datametadata]
o Units: ”GPS coordinates”

CREW - FP7 - GA No. 258301 D3.1

 42

2.4.3 Processing tools: none

2.4.4 Signal generation: none

3 Experiment Trace(s)

Trace 1:

Description: first iteration of the experiment
Time: 22.05.2011 at 17:15-18:15 CET
Trace-specific meta-information : none
Trace-file: LINK

 Trace 2:

Description: second iteration of the experiment
Time: 23.05.2011 at 16:05-17:05 CET
Trace-specific meta-information:

Space.layout: in addition to the two nodes attached to right hand and
left foot we used a third node attached to the chest
Format: we have an additional RSSI trace for the new node

Trace-file: LINK

3.4.2 BEE2 Example
The calibration process requires two steps. First the transmitter is calibrated and than the receiver. We
consider this as two separate experiments because the two different devices are used for measurements
and both give output in completely different formats. Both experiments are still tightly connected to
each other. That is why both are mentioned in each other references, and most of the description is
common.

1 Experiment Abstract
1.1 Title Transmitter calibration of the radio Front Ends for BEE2
1.2 Unique CREW Tag: 2011-1-Chwalisz
1.3 Author(s): Mikołaj Chwalisz
1.3.1 Contact information: chwalisz@tkn.tu-berlin.de, Einsteinufer 25, 10587 Berlin,

Germany
1.4 Release Date: 07.04.2011
1.5 Experiment summary: The calibration is a process aimed to give a meaningful

comparison between measurements made by one device, with known magnitude and
correctness, and a second device. This step is essential to be able to compare results
with other experiments, especially with custom made devices. The other goal of the
calibration is to determine the condition of the instrument to perform measurements.
This also includes the ability to transfer defined measurement units.
In order to calibrate the receiver, it is necessary to have a calibrated transmitter.

mailto:chwalisz@tkn.tu-berlin.de

CREW - FP7 - GA No. 258301 D3.1

 43

In this experiment we try to calibrate BEE2 Front End as the transmitter based on
signal received by the R&S FSV Spectrum Analyzer

1.6 Collection methodology: Devices where set to one frequency and the power level of the
generic OFDM was measured. Whole experiments where done with cable connection.
Transmitting device is set to one center frequency

1.7 Further documentation: The measurements where published in master thesis of Mikołaj
Chwalisz.

1.7.1 Bibtex: @MastersThesis{ chwalisz2010mscthesis, title = "{Development of a testbed
for spectrum diversity measurements in the ISM band}", author = "Miko{\l}aj
Chwalisz", school = {Warsaw University of Technology \& Technische Universit{\"a}t
Berlin}, month = "March", year = "2011"}

1.8 Related experiments: This is part of calibration process of BEE2 Radio Front Ends. The
other part has CREW Tag: 2011-2-Chwalisz

1.9 Notes

2 Meta-information
2.1 Devices:

• BEE2 Board: The Berkeley Emulation Engine 2 (BEE2) was developed to be a
reusable, modular, and scalable framework for designing high-end reconfigurable
computers at the Berkeley Wireless Research Center (BWRC). It is supposed to help
solving computationally intensive problems such as: emulation and design of wireless
communication systems, real-time scientific computation, high-performance real-time
digital signal processing

• Radio Front End: The radio capabilities for BEE2 board in the CogRad testbed are
provided by the radio Front End. It is made of the baseband board performing data
processing, control and digital to analog conversion. The daughter card is used to
perform up/down signal conversion to 2.4 GHz.
http://bwrc.eecs.berkeley.edu/Research/Cognitive/prototyping_platform.htm

• R&S FSV Spectrum Analyzer
2.1.1 Datasheets:

• BEE2: C. Chang, J. Wawrzynek, and R.W. Brodersen, BEE2: a high-end
reconfigurable computing system, Design Test of Computers, IEEE 22 (2005), no. 2,
114–125.
http://bee2.eecs.berkeley.edu/wiki/BEE2wiki.html
http://bee2.eecs.berkeley.edu/

• Front End: Fred Burghardt, Cognitive Radio Testbed Users Manual, April 2009.
http://bwrc.eecs.berkeley.edu/Research/Cognitive/prototyping_platform.htm

• R&S FSV: http://www2.rohde-schwarz.com/file/FSV_dat-sw_en.pdf

2.1.2 Device Software

2.1.2.1 Description: MSSGE (Matlab / Simulink / System Generator / EDK) toolchain for
FPGA designs. Used CASPER libraries and code from BWRC (Berkeley)

2.1.2.2 Code Software like FPGA designs is available, please contact author.
2.2 Space

http://bwrc.eecs.berkeley.edu/Research/Cognitive/prototyping_platform.htm
http://bee2.eecs.berkeley.edu/wiki/BEE2wiki.html
http://bee2.eecs.berkeley.edu/
http://bwrc.eecs.berkeley.edu/Research/Cognitive/prototyping_platform.htm
http://www2.rohde-schwarz.com/file/FSV_dat-sw_en.pdf

CREW - FP7 - GA No. 258301 D3.1

 44

2.2.1 Layout: Cable connection between devices.

2.2.2 Mobility: None

2.3 Time Couple of seconds per measurement
2.4 RF Frequency

2.4.1 Operating range(s) 2.4 GHz ISM band, 2400 – 2483 MHz
2.4.2 Interference sources: None, cable, the no loss connection is assumed
2.5 Trace description

2.5.1 Collected metrics: Power measurements in dBm, detector and trace mode of spectrum
analyzer defined in every trace file.

2.5.2 Data accuracy: Total measurement uncertainty: 0.28dB
2.5.3 Format text file with the following structure:

• Parameter listing:
o Name; Value; (Unit)
o Values;Number of values;
o Vector: Frequency;dBm

• Additional PNG file with spectrum analyzer screen shot
2.5.4 Processing tools: Basic analysis GUI and matlab scripts available, please contact

author.
2.5.5 Signal generation: For signal generation the FE was used. One or two OFDM symbols

stored in FE's FPGA fabric and send repeatedly. Resulting in constant OFDM stream.
Matlab file with I/Q samples is available as well as the scripts to create it.

3 Experiment Trace(s)
3.1 Trace 1:

3.1.1 Description 10dB Attenuator added into cable
3.1.2 Time 20.01.2011 at 16:05 CET
3.1.3 Trace-specific meta-information none
3.1.4 Trace-file fec att10dB count500 swt1ms clrw.DAT
3.2 Trace 2:

3.2.1 Description signal was averaged over 500 sweeps
3.2.2 Time 20.01.2011 at 16:15 CET
3.2.3 Trace-specific meta-information none
3.2.4 Trace-file fec att0dB count500 swt1.1ms rbw100khz avg.DAT

3.4.3 Receiver calibration
1 Experiment Abstract
1.1 Title Receiver calibration of the radio Front Ends for BEE2
1.2 Unique CREW Tag: 2011-2-Chwalisz

CREW - FP7 - GA No. 258301 D3.1

 45

1.3 Author(s): Mikołaj Chwalisz
1.3.1 Contact information: chwalisz@tkn.tu-berlin.de, Einsteinufer 25, 10587 Berlin,

Germany
1.4 Release Date: 07.04.2011
1.5 Experiment summary: The calibration is a process aimed to give a meaningful

comparison between measurements made by one device, with known magnitude and
correctness, and a second device. This step is essential to be able to compare results
with other experiments, especially with custom made devices. The other goal of the
calibration is to determine the condition of the instrument to perform measurements.
This also includes the ability to transfer defined measurement units.
In order to calibrate the receiver, we take the knowledge of the signal strength of the
Front End from experiment 2011-1-Chwalisz and take it as the input for receiver
calibration.

1.6 Collection methodology: Devices where set to one frequency and the power level of the
generic OFDM was measured. Whole experiments where done with cable connection.
Transmitting device is set to one center frequency

1.7 Further documentation: The measurements where published in master thesis of Mikołaj
Chwalisz.

1.7.1 Bibtex: @MastersThesis{ chwalisz2010mscthesis, title = "{Development of a testbed
for spectrum diversity measurements in the ISM band}", author = "Miko{\l}aj
Chwalisz", school = {Warsaw University of Technology \& Technische Universit{\"a}t
Berlin}, month = "March", year = "2011"}

1.8 Related experiments This is part of calibration process of BEE2 Radio Front Ends. The
other part has CREW Tag: 2011-1-Chwalisz

1.9 Notes

2 Meta-information
2.1 Devices:

• BEE2 Board: The Berkeley Emulation Engine 2 (BEE2) was developed to be a
reusable, modular, and scalable framework for designing high-end reconfigurable
computers at the Berkeley Wireless Research Center (BWRC). It is supposed to help
solving computationally intensive problems such as: emulation and design of wireless
communication systems, real-time scientific computation, high-performance real-time
digital signal processing

• Radio Front End: The radio capabilities for BEE2 board in the CogRad testbed are
provided by the radio Front End. It is made of the baseband board performing data
processing, control and digital to analog conversion. The daughter card is used to
perform up/down signal conversion to 2.4 GHz.
http://bwrc.eecs.berkeley.edu/Research/Cognitive/prototyping_platform.htm

2.1.1 Datasheets:

• BEE2: C. Chang, J. Wawrzynek, and R.W. Brodersen, BEE2: a high-end
reconfigurable computing system, Design Test of Computers, IEEE 22 (2005), no. 2,
114–125. http://bee2.eecs.berkeley.edu/wiki/BEE2wiki.html
http://bee2.eecs.berkeley.edu/

mailto:chwalisz@tkn.tu-berlin.de
http://bwrc.eecs.berkeley.edu/Research/Cognitive/prototyping_platform.htm
http://bee2.eecs.berkeley.edu/wiki/BEE2wiki.html
http://bee2.eecs.berkeley.edu/

CREW - FP7 - GA No. 258301 D3.1

 46

• Front End: Fred Burghardt, Cognitive Radio Testbed Users Manual, April 2009.

http://bwrc.eecs.berkeley.edu/Research/Cognitive/prototyping_platform.htm

2.1.2 Device Software

2.1.2.1 Description: MSSGE (Matlab / Simulink / System Generator / EDK) toolchain for
FPGA designs. Used CASPER libraries and code from BWRC (Berkeley).

2.1.2.2 Code Software like FPGA designs is available, please contact author.
2.2 Space

2.2.1 Layout: Cable connection between devices.
2.2.2 Mobility: None
2.3 Time Couple of seconds per measurement
2.4 RF Frequency

2.4.1 Operating range(s) 2.4 GHz ISM band, 2400 – 2483 MHz
2.4.2 Interference sources: None, cable, the no loss connection is assumed
2.5 Trace description

2.5.1 Collected metrics: Calculated FFT data from I/Q measurements in dB. Exact relation
to the dBm is to be defined by this experiment.

2.5.2 Data accuracy:
2.5.3 Format matlab file with the following structure:

• frequency: Center frequency [double]

• Unit: MHz

• fe_id: [double]

• name: file name [string]

• fe: front end name [string]

• fs: sampling frequency [double]

• Unit: Hz

• spectrum: FFT series [MxN double]

• Unit: dB

• frequency_series: [Mx1 double]

• Unit: Hz
2.5.4 Processing tools: Basic analysis GUI and matlab scripts for loading the data is

available
2.5.5 Signal generation: For signal generation the FE was used. One or two OFDM symbols

stored in FE's FPGA fabric and send repeatedly. Resulting in constant OFDM stream.
Matlab file with I/Q samples is available as well as the scripts to create it. Refer also
to Experiment 2011-1-Chwalisz

3 Experiment Trace(s)

http://bwrc.eecs.berkeley.edu/Research/Cognitive/prototyping_platform.htm

CREW - FP7 - GA No. 258301 D3.1

 47

3.1 Trace 1:

3.1.1 Description 10dB Attenuator added into cable, FE gains set to:

• agc = 130

• pga = 14
3.1.2 Time 20.01.2011 at 16:55 CET
3.1.3 Trace-specific meta-information none
3.1.4 Trace-file memdump_0_FEA_agc_130_pga_14_att10db_b.fft
3.2 Trace 2:

3.2.1 Description 10dB Attenuator added into cable, FE gains set to:

• agc = 130

• pga = 14
3.2.2 Time 20.01.2011 at 17:10 CET
3.2.3 Trace-specific meta-information none
3.2.4 Trace-file memdump_0_FEA_agc_130_pga_14_att0db_b.fft

3.4.4 Dublin Sensing Experiment
 1 Experiment Abstract
 1.1 Title: Sensing of DVB-T signals transmitted in the 2.4 GHz ISM band with a range of

sensing devices

 1.2 Unique CREW Tag: 2011-1-sensing_dublin

 1.3 Author(s): Sofie Pollin, Peter Van Wesemael

 1.3.1 Contact information : pollins@imec.be, Kapeldreef 75, 3001 Leuven, Belgium

 1.4 Release Date: xxxx.xx.xx

 1.5 Experiment summary: An 8 MHz DVB-T signal is transmitted in the 2.4 GHz ISM band
in a large meeting room at CTVR in Dublin. The goal is to familiarize with the results
and output formats of various sensing solutions. Some of those are capable of sensing in
the 2.4 GHz ISM band only. Some of them have special algorithms for detecting DVB-T
signals. Hence, the decision to sense DVB-T signals in the 2.4 GHz ISM band. The
DVB-T signals were transmitted at various transmit powers. Also, there were scenarios
with users present, without users present, and with users walking in the meeting room.
Ambient interference from other devices in the 2.4 GHz ISM band is present during the
experiment.

 1.6 Collection methodology: Sensing is done with a range of sensing solutions:

• imec Advanced Spectrum Sensing
Low power/low cost SDR RFIC prototype
Input range from 0.1 up to 6 GHz
Programmable channel bandwidth from 1 up to 40 MHz
On-chip 65MS/s 10b ADC

mailto:pollins@imec.be

CREW - FP7 - GA No. 258301 D3.1

 48

5 mm2 – 40nm TSMC technology

• USRP1 (Ettus Research)
Highly flexible low cost RF transceiver.
For these experiments RFX2400 daughterboard used. It operates between 2.3 and 2.9
GHz.
Can sample up to 8Msamples/sec.
Experiment parameters

• Iris
Component based architecture for software defined radio
Designed and developed in CTVR, Trinity College Dublin
Highly reconfigurable
Parameters and components of radio can be changed in real time.
USRP1 front-end used in experiments

• Wi-Spy 2.4x (MetaGeek, LLC.)
Low-cost spectrum sensor for 2.4 GHz ISM band
We used Kismet Spec-tools for Linux OS to acquire power spectral density estimates in
a non-proprietary format
Spectrum dumps are performed as fixed bandwidth sweeps of the entire ISM 2.4 GHz
band

• AirMagnet Spectrum XT
USB product designed for troubleshooting and deploying WLAN networks
ISM 2.4 GHz/ 5 GHz
internal or external antenna

• TelosB
Sensor network hardware platform developed at UC Berkeley
Uses the IEEE 802.15.4-compliant CC2420 transceiver, which can measure RF energy
in 2.4 GHz ISM band
IEEE 802.15.4 channel (resolution) bandwidth is 2 MHz,

Traces were collected for a range of scenarios:

• Slow On/Off Pattern (60 s On / 60 s Off)

• Fast On/Off Pattern (10 ms On / 100 ms Off)

• Change of TX Power (-4 dBm / -15 dBm / -30 dBm)

• Change of Distance between TX and Sensing Nodes

• Change of Center Freq. (2.404 GHz : 8 MHz : 2.496 GHz)
 1.7 Further documentation : Our setup and data is also described in paper ‘Christoph Heller,

Stefan Bouckaert, Ingrid Moerman, Pollin Sofie; Van Wesemael Peter, Danny Finn,
Daniel Willkomm, Jan-Hinrich Hauer, “A Performance Comparison of Different

CREW - FP7 - GA No. 258301 D3.1

 49

Spectrum Sensing Techniques, “ WinnComm 2011.’

 1.8 Related experiments: Follow-up experiments in Dresden and Dublin with CREW Tag:
2011-4-sensing_dresden and 2011-6-sensing_berlin

 1.9 Notes:

2 Meta-information
2.1 Devices

2.1.1 Datasheets:

• imec Advanced Spectrum Sensing
The imec spectrum sensing solution is a prototype, hence no datasheet is available.
More information can be found in these leaflets and publications:
http://www2.imec.be/content/user/File/Brochures/GR2011_Leaflet_Spectral%20S
ensing.pdf
http://www2.imec.be/content/user/File/Brochures/GR2010_Leaflet%20Scaldio.pdf
http://www2.imec.be/content/user/File/Brochures/GR2011_Leaflet_COBRA.pdf
M. Ingels et al. A 5mm2 40nm LP CMOS Transceiver for a Software-De_ned
Radio Platform. IEEE Journal of Solid-State Circuits, 45(12):2794{2806, 2010.

• USRP1 (Ettus Research) http://www.ettus.com/downloads/ettus_ds_usrp_v7.pdf
http://www.ettus.com/downloads/ettus_daughterboards.pdf

• Iris
L. E. Doyle, P. Sutton, K. Nolan, B. Ozgul, J. Lotze, T. Rondeau, S. Fahmy, H.
Lahlou, and L. A. DaSilva,“Experiences from the Iris testbed in dynamic
spectrum access and cognitive radio experimentation,” IEEE Symposia on New
Frontiers in Dynamic Spectrum Access Networks (DySPAN), Singapore, 6-9 April,
2010.
Paul Sutton, Jorg Lotze, Hicham Lahlou, Baris Ozgul, Keith Nolan, Linda Doyle,
Suhaib Fahmy, Juanjo Noguera, "Multi-Platform Demonstrations using the Iris
Architecture for Cognitive Radio Network Testbeds", Crowncom 2010, Cannes,
France

• Wi-Spy 2.4x (MetaGeek, LLC.)
http://files.metageek.net/marketing/Wi-Spy_2.4x/Wi-spy_24x_medium.pdf

• AirMagnet Spectrum XT
http://airmagnet.flukenetworks.com/assets/datasheets/AirMagnet_SpectrumXT_Datas
heet.pdf

• TelosB
http://www.willow.co.uk/TelosB_Datasheet.pdf

2.1.2 Software:

2.1.2.1 Description:
For the overall processing, comparison and evaluation of the results Matlab is used.
The signal generator used for the test signal generation is also controlled from
Matlab. The different devices use different software:
Imec advanced spectrum sensing: c-code controlled from a Matlab environment

http://www2.imec.be/content/user/File/Brochures/GR2011_Leaflet_Spectral%20Sensing.pdf
http://www2.imec.be/content/user/File/Brochures/GR2011_Leaflet_Spectral%20Sensing.pdf
http://www2.imec.be/content/user/File/Brochures/GR2010_Leaflet%20Scaldio.pdf
http://www2.imec.be/content/user/File/Brochures/GR2011_Leaflet_COBRA.pdf
http://www.ettus.com/downloads/ettus_ds_usrp_v7.pdf
http://www.ettus.com/downloads/ettus_daughterboards.pdf
http://files.metageek.net/marketing/Wi-Spy_2.4x/Wi-spy_24x_medium.pdf
http://airmagnet.flukenetworks.com/assets/datasheets/AirMagnet_SpectrumXT_Datasheet.pdf
http://airmagnet.flukenetworks.com/assets/datasheets/AirMagnet_SpectrumXT_Datasheet.pdf
http://www.willow.co.uk/TelosB_Datasheet.pdf

CREW - FP7 - GA No. 258301 D3.1

 50

USRP1: Iris for I/Q data acquisition followed by Matlab for processing
WiSpy 2.4x: Kismet Spec-tools
AirMagnet: AirMagnet Spectrum XT TelosB: TinyOS 2 application

2.1.2.2 Code: crew.intec.ugent.be or https://svn.atlantis.ugent.be/svn/CREW/Data/Dublin-
Jan2011/

2.2 Space

2.2.1 Layout:

The transmitter and sensing agents are set up in a large meeting room.

2.2.2 Mobility: none
2.3 Time: 2011-01-11 – 2011-01-13

2.4 RF Frequency

2.4.1 Operating range(s): 2.4 GHz ISM Band, 2400 – 2483 MHz
2.5 Interference sources: There was likely uncontrolled interference from various 2.4 GHz

band devices.
2.6 Trace description

2.6.1 Collected metrics (what type of data did we collect, signal power, time, location, …)

• imec Advanced Spectrum Sensing
Raw IQ time domain samples sampled at 40 MSamples/s. with a 20 MHz analog
signal bandwidth.

• USRP1 (Ettus Research)
Output type: IQ samples

• Bandwidth: 8MHzWi-Spy 2.4x (MetaGeek, LLC.)
Spectrum dumps are performed as fixed bandwidth sweeps of the entire ISM 2.4
GHz band
The resolution bandwidth is 327 KHz, sweep time is 507 ms

• AirMagnet Spectrum XT
CSV log files: 1 report/second

CREW - FP7 - GA No. 258301 D3.1

 51

• TelosB
Take one RSSI sample per channel (signal power averaged over 192 us)
Output data -> total: 2 ms per sample (sampling frequency 500 Hz)

2.6.2 Data accuracy:

• imec Advanced Spectrum Sensing
RBW / Sweep time 260 Hz / 1s

• USRP1 (Ettus Research)
Resolution BW: 7.81 kHz
Sensing time: 5.12ms

• Wi-Spy 2.4x (MetaGeek, LLC.)
Resolution bandwidth 327 kHz
Sweep time 300ms

• AirMagnet Spectrum XT
amplitude accuracy: +/- 2 dB
Resolution bandwidth 156.3 kHz
sweep time: 64 ms per 20 MHz

• TelosB
Sweep over spectrum in steps of 2 MHz (e.g. 2400->2402->2404 MHz)
Take one RSSI sample per channel (signal power averaged over 192 us)

3.5.1 Format: Format (detailed description of the trace format: It is left open in which
format the actual measurement trace is stored as long as it is sufficiently well
described and can be converted to CSV, which we consider the baseline. We also
recommend other formats, such as matlab timeseries objects. The measurement units
(frequency, power etc.) are described in IEEE 1900.6 in Section 6.2 on page 73 and
should be referenced here)

2.6.3 Processing tools: none

2.6.4 Signal generation:

• Source: Anritsu MG3700A RF Signal Generator

• Characteristic: DVB-T Signal

• Center Frequency: 2.477 GHz

• Bandwidth: 8 MHz

• CP Ratio: 1/4

• Power: -4 dBm

3 Experiment Trace(s)
3.1 Trace 1: https://svn.atlantis.ugent.be/svn/CREW/Data/Dublin-Jan2011/imec_scaldio2b/

3.1.1 Description: imec sensing agent traces

CREW - FP7 - GA No. 258301 D3.1

 52

3.1.2 Time 2011-01-12 11h10m09s – 18h27m07s
3.1.3 Trace-specific meta-information none
3.1.4 Trace-file: IMEC_1.1_onoff.tgz, IMEC_1.1_signal.tgz, IMEC_1.1_silent.tgz,

IMEC_1.2_onoff.tgz, IMEC_1.2_signal.tgz, IMEC_1.3_onoff.tgz,
IMEC_1.3_signal.tgz, IMEC_1.4_signal.tgz, IMEC_1.5_signal.tgz,
IMEC_2.1_signal-15dBm.tgz, IMEC_2.2_signal-15dBm.tgz, IMEC_2.3_signal-
15dBm.tgz, IMEC_3.1_signal-30dBm.tgz, IMEC_3.2_signal-30dBm.tgz,
IMEC_3.3_signal-30dBm.tgz, IMEC_4.1_signal.tgz, IMEC_4.2_signal.tgz,
IMEC_4.3_signal.tgz, IMEC_5.1_signal.tgz, IMEC_5.2_signal.tgz,
IMEC_6.1_signal.tgz, IMEC_7.1_signal.tgz

3.2 Trace 2: https://svn.atlantis.ugent.be/svn/CREW/Data/Dublin-
Jan2011/Airmagnet%20Spectrum%20XT/Description: imec sensing agent traces

3.2.1 Time 2011-01-12 11h10m09s – 18h27m07s
3.2.2 Trace-specific meta-information none
3.2.3 Trace-file: CREW_1_1_onoff_2011-01-12_14-49-12.csv, CREW_1_1_signal_2011-

01-12_12-02-05.csv, CREW_1_1_silent_2011-01-12_11-15-36.csv,
CREW_1_2_onoff_2011-01-12_15-08-13.csv, CREW_1_2_signal_2011-01-12_12-
24-18.csv, CREW_1_2_silent_2011-01-12_15-24-37.csv, CREW_1_3_onoff_2011-
01-12_15-17-20.csv, CREW_1_3_signal_2011-01-12_12-36-20.csv,
CREW_1_4_signal_2011-01-12_15-59-40.csv, CREW_1_5_signal_2011-01-12_16-
05-45.csv, CREW_2_1_signal_2011-01-12_16-22-55.csv, CREW_2_2_signal_2011-
01-12_16-30-26.csv, CREW_2_3_signal_2011-01-12_16-38-03.csv,
CREW_3_1_signal_2011-01-12_16-43-29.csv, CREW_3_2_signal_2011-01-12_16-
51-01.csv, CREW_3_3_signal_2011-01-12_16-58-16.csv, CREW_4_1_signal_2011-
01-12_17-11-50.csv, CREW_4_2_signal_2011-01-12_17-15-05.csv,
CREW_4_3_signal_2011-01-12_17-19-28.csv, CREW_5_1_signal_2011-01-12_17-
23-05.csv, CREW_5_2_signal_2011-01-12_17-28-49.csv, CREW_5_3_signal_2011-
01-12_17-31-53.csv, CREW_6_1_signal_2011-01-12_17-42-05.csv,
CREW_7_1_signal_2011-01-12_18-20-12.csv

3.3 Trace 3: https://svn.atlantis.ugent.be/svn/CREW/Data/Dublin-
Jan2011/IrisReadings/I_and_Q_data/

3.3.1 Time 2011-01-12 11h10m09s – 18h27m07s
3.3.2 Trace-specific meta-information none
3.3.3 Trace-file: measurement1.2onoff, measurement1.2silent, measurement2.1onoff,

measurement2.3signal, measurement3.3signal, measurement4.2signal,
measurement4.3signal, measurement5.2signal, measurement5.3signal,
measurement6.1signal

3.4 Trace 4: https://svn.atlantis.ugent.be/svn/CREW/Data/Dublin-
Jan2011/IrisReadings/PSD_estimates/

3.4.1 Time 2011-01-12 11h10m09s – 18h27m07s
3.4.2 Trace-specific meta-information none
3.4.3 Trace-file: measurement1.2onoff, measurement1.2silent, measurement2.1onoff,

measurement2.1signal, measurement2.2signal, measurement2.3signal,
measurement3.3signal, measurement4.2signal, measurement4.3signal,

CREW - FP7 - GA No. 258301 D3.1

 53

measurement5.2signal, measurement5.3signal, measurement6.1signal

3.5 Trace 5: https://svn.atlantis.ugent.be/svn/CREW/Data/Dublin-Jan2011/telos/

3.5.1 Time 2011-01-12 11h10m09s – 18h27m07s
3.5.2 Trace-specific meta-information none
3.5.3 Trace-file: CREW_Measurement_1.1_signa.txt, CREW_Measurement_1.1_silent.txt,

CREW_Measurement_1.2_OnOff_1channe.txt,
CREW_Measurement_1.2_OnOff_5channels.txt,
CREW_Measurement_1.2_Silent_1channe.txt,
CREW_Measurement_1.2_Silent_5channels.txt, CREW_Measurement_1.2_signa.txt,
CREW_Measurement_1.3_OnOff_1channe.txt,
CREW_Measurement_1.3_OnOff_5channels.txt, CREW_Measurement_1.3_signa.txt,
CREW_Measurement_1.4_Signal_1channe.txt,
CREW_Measurement_1.4_Signal_5channels.txt, CREW_Measurement_1.4_signa.txt,
CREW_Measurement_1.5_Signal_1channe.txt,
CREW_Measurement_1.5_Signal_5channels.txt,
CREW_Measurement_2.1_Signal_1channe.txt,
CREW_Measurement_2.1_Signal_5channels.txt,
CREW_Measurement_2.2_Signal_1channe.txt,
CREW_Measurement_2.2_Signal_5channels.txt,
CREW_Measurement_2.3_Signal_1channe.txt,
CREW_Measurement_2.3_Signal_5channels.txt,
CREW_Measurement_3.1_Signal_1channe.txt,
CREW_Measurement_3.1_Signal_5channels.txt,
CREW_Measurement_3.2_Signal_1channe.txt,
CREW_Measurement_3.2_Signal_5channels.txt,
CREW_Measurement_3.3_Signal_1channe.txt,
CREW_Measurement_3.3_Signal_5channels.txt,
CREW_Measurement_4.1_Signal_1channe.txt,
CREW_Measurement_4.1_Signal_5channels.txt,
CREW_Measurement_4.2_Signal_1channe.txt,
CREW_Measurement_4.2_Signal_5channels.txt,
CREW_Measurement_4.3_Signal_1channe.txt,
CREW_Measurement_4.3_Signal_5channels.txt,
CREW_Measurement_5.1_Signal_1channe.txt,
CREW_Measurement_5.1_Signal_5channels.txt,
CREW_Measurement_5.2_Signal_1channe.txt,
CREW_Measurement_5.2_Signal_5channels.txt,
CREW_Measurement_5.3_Signal_1channe.txt,
CREW_Measurement_5.3_Signal_5channels.txt,
CREW_Measurement_6.1_Signal_1channe.txt,
CREW_Measurement_6.1_Signal_5channels.txt,
CREW_Measurement_7.1_Signal_16channels.txt,
CREW_Measurement_7.1_Signal_1channe.txt,

3.6 Trace 6: https://svn.atlantis.ugent.be/svn/CREW/Data/Dublin-Jan2011/wispy/

3.6.1 Time 2011-01-12 11h10m09s – 18h27m07s
3.6.2 Trace-specific meta-information none
3.6.3 Trace-file: measurement1.1signal.txt, measurement1.1silent.txt,

CREW - FP7 - GA No. 258301 D3.1

 54

measurement1.2onoff.txt, measurement1.2signal.txt, measurement1.2silent.txt,
measurement1.3onoff.txt, measurement1.3signal.txt, measurement1.4signal.txt,
measurement1.5signal.txt, measurement2.1signal.txt, measurement2.2signal.txt,
measurement2.3signal.txt, measurement3.1signal.txt, measurement3.2signal.txt,
measurement3.3signal.txt, measurement4.1signal.txt, measurement4.2signal.txt,
measurement4.3signal.txt, measurement5.1signal.txt, measurement5.2signal.txt,
measurement5.3signal.txt, measurement6.1signal.txt, measurement7.1signal.txt,

CREW - FP7 - GA No. 258301 D3.1

 55

4 Common portal
At multiple points in this deliverable, the CREW portal is referenced. The CREW portal is a public
website, containing all information and external links needed for experimenters to be able to
understand the functionality of the CREW platform. The portal can be reached via the public CREW
website, located at www.crew-project.eu.

The goal of the portal is twofold:

1. Present experimenters with a high-level overview of the available infrastructures, so one or
multiple cognitive components (i.e. wireless testbeds, sensing engines, software etc.) of use
for a specific experiment may be identified.

2. Present all details needed to start experiments using the cognitive components of choice.

The CREW portal is updated, whenever CREW components (hardware and/or software) are added or
modified. For an up-to-date version of the portal, the reader is referred to www.crew-
project.eu/portal. A snapshot of the portal as of 30/09/2011 is included in Appendix A: CREW Portal
of this document.

http://www.crew-project.eu/

CREW - FP7 - GA No. 258301 D3.1

 56

5 Testbeds components and combinations

5.1 Mix and match components approach, the “virtual components”
As introduced in chapter 3 of D2.2, the combination of components from different testbeds is one of
the modes of operation of the CREW federation. This mode and the general “virtual components”
approach is one of the fundamental added values of the Federation: providing new capabilities with
the existing features and capabilities. New functionalities are provided with as little as possible
integration effort. This combination of components requires the definition of interfaces. Depending on
the type of components combined and the targeted functionality different sort of interfaces are
possible, ranging from simple usage conventions to elaborated software application programming
interfaces (APIs).

The following subsections will detail the interfaces identified and used within CREW together with
the components and their combinations.

5.2 Component interfaces

5.2.1 Transceiver Facility API1

5.2.1.1 Concept and approach
D2.2 section 3.3 introduced the concept and the rationale behind the Transceiver facility [5]. As stated
there, the goal is to provide a solution to the problem of the multiplicity of interface specifications for
radio transceivers programming, command and control. Depending on the industry (military,
commercial, public safety) or the market segment (e.g. base station or mobile device manufacturer)
very different specifications are available. These specifications may apply at different levels of the
protocol stack, involve one or more hardware devices or address a completely different set of
parameters and properties of the radio equipment. [6], [7], [8] are examples of these specifications.

The transceiver facility tries to provide a generic and standardized solution from an SDR perspective.
Figure 21 in D2.2 highlights the fundamental SDR principle of “waveform” and “platform” separation
(also called the “waveform” and “platform” paradigm).

The term “waveform” refers to the radio application. A “waveform” could also be seen as the radio
standard e.g. WCDMA, GSM, WiMAX, TETRA or the radio protocol stack (physical layer, media
access control and any other applicative layer). The term is thus encompassing all the software (either
general computing or specific signal processing code) but eventually also dedicated hardware specially
designed for a radio access technology or communication standard (e.g. high performance ASIC for
FFT or encryption engine).

The term “platform” is on the other hand referring to any hardware component not specifically
designed for the radio standard but used by it.

The “waveform” and “platform” separation principle appears quite straightforward for general
computing tasks, for example those performed by the MAC. The “waveform” is the software and the
“platform” a GPP on which the MAC software executes. The paradigm tends to be less clear if we
look at the physical signal processing layer, where most of the computing will be performed by a DSP
but potentially, for performance and consumption requirements, specific integrated hardware modules
will also take in charge some of the radio protocol necessary tasks. In that case the “waveform” will be
the signal processing software running on the DSP but also the IP of the integrated circuit and the
“platform” will only be the DSP.

1 Most of this chapter summarizes contents of the Transceiver Facility Specification official document. However, owing to the
valuable feedback provided by the USRP2 implementation carried out within CREW modifications are possible. Those are mainly
complements to the existing content i.e. new API services. Slight deviations from the official standard are also possible. In that cases the
description presented here replaces and supersedes the official document contents.

CREW - FP7 - GA No. 258301 D3.1

 57

The frontier blurs further when we look at the radio transceiver, typically composed by a digital and an
analogue part. The radio transceiver was traditionally and it is still for most commercial applications
(consumer products) highly dependent of the radio access technology, typically depending on its
bandwidth, band and data rates. Nevertheless the SDR technology, by moving more and more
hardware functionalities to the software realm, is enabling the design of generic transceiver with high
bandwidth and large frequency range RF front-ends. These transceivers are seen as “platforms” with a
given set of features and performances through which a group of “waveform” may access the radio
channel.

The Transceiver facility sets the frontier and defines a set of interfaces between the two sides. The
next figure depicts the level at which the Transceiver facility interface sits.

Figure 16: Transceiver interface sits between the “waveform” and the “platform”

5.2.1.2 Transceiver functionality
This section is intended to provide a summary of the main functionalities that any implementation of
the Transceiver should provide. It also aims at identifying the key concepts being the foundations for
the interfaces presented in the next section.

The transceiver is seen as depicted in figure Figure 17, it takes a baseband signal and transforms it in a
radio signal that can access the air through the antenna. Therefore the transceiver is defined as the
processing stage that transposes, for transmission, a baseband signal into a radio signal, and, for
reception, a radio signal into a baseband signal. This processing stage is necessary to implement a
given radio access technology. The Transceiver is not part of the waveform but of the platform.

Transceiver
Subsystem

Baseband
Signal

RF
Signal

Real-time
Control

(Deployment)

Analogue
Interfaces

Programming
interfaces

Properties

R
W

R/W access granted to
Configuration

Figure 17: Transceiver conceptual view and external interfaces

The transceiver has a set of properties, a number of interfaces with the modem (or physical layer part
of the “waveform”) and other platform devices through programming interfaces (for data exchange
and real-time control). It can also be configured. This will depend on the capabilities of the
implementation (ability to support several frequency ranges, sampling ratios, bandwidths).

CREW - FP7 - GA No. 258301 D3.1

 58

The two key functionalities of the Transceiver are the transmit and receive channels2. In the case of
simplex waveforms (i.e. Transmit-only or Receive-only), only the corresponding type of channel is
used, and a Transceiver providing only this functionality would match the requirements of such a
waveform. In case of duplex waveforms both types of channels shall be provided.

5.2.1.3 Key concepts

5.2.1.3.1 Up-Conversion and Down-Conversion
For a transmission a Transmit channel will perform an Up-conversion of a baseband signal to a radio
signal while a Receive channel will perform a Down-conversion of a radio signal to a baseband signal
The baseband signal is an analytical signal (sampled complex I&Q data) sampled at a sampling
frequency (specific to the considered waveform).

Basically the Up-conversion carries out the whole operation of generating a RF signal modulated with
or carrying the information contained in the baseband signal. Common processing steps for such an
operation are: sampling rate adaptation, D/A conversion, generation of phase/quadrature signal
implementing Hilbert transform, transposition from base-band to carrier frequency, channel filtering
and transmission power control.

Likewise Down-conversion consists of extracting the baseband information contained in the radio
signal to an analytic signal. This typically involves: transposition from carrier frequency to base-band,
channel filtering, A/D conversion, analytic filtering generating analytic signal from the real signal,
sampling rate adaptation and automatic gain control.

5.2.1.3.2 Burst
The notion of Burst is fundamental for the whole Transceiver approach. The Transceiver operation is
seen a as the transmission and reception of RF signal in bursts of a given duration (defined by start and
stop times) with an attached set of radio properties (carrier frequency, bandwidth). In Transmission the
Transceiver is taking the samples of a baseband analytical signal or baseband burst at its input and up-
converting them. In reception it is down-converting the RF signal burst at the antenna into a set of
samples composing the baseband burst. The Transceiver is therefore working on a burst basis.

Start
Time

RF Burst (Radiated) RF Burst (Acquired)

First Sample Last Sample First Sample Last Sample

1 BB Burst
(Sent)

BB Burst
(Received)

1

Tx Channel Rx Channel

Burst Length

Start
Time

Burst Length

Stop
Time

Stop
Time

2 It is worth highlighting that the notions of Tx Channel and Rx Channels have nothing to do with the radio propagation channel.

CREW - FP7 - GA No. 258301 D3.1

 59

Figure 18: Transceiver works on a Burst basis

The Transceiver API provides services for creating bursts by specifying a Time Profile and a Tuning
Profile, both composing the Burst Profile. The waveform uses these services to create the bursts
according to its needs.

• Time Profile: It is defined by a Start Time and a Stop Time.

• Tuning profile: Carrier frequency, transmission power and receive packet size are direct
tuning parameters. Additionally, the API services offer an additional parameter called Preset.
The number and type of configuration settings included in the Preset are Transceiver
implementation dependent. Most of the Tuning Parameters may not be directly specified at
run-time. The Preset parameter is intended for those Transceiver parameters that will not be
changed by the waveform on a real-time basis. Baseband sampling frequency, channel
bandwidth, co-channel rejection, signal dynamic, in-band ripple are typical examples of such
parameters. Each specific modulation type used by a given waveform will request an adapted
set of Preset tuning parameters. For many waveforms a single set of Preset tuning parameters
is enough.

The invocation of all burst control operations has to be sufficiently anticipated to allow the
Transceiver to react. Several burst profiles may be provided in advance.

Some waveforms may require “on-the-fly” modifications of the Bursts (indeed the Burst Profile) after
those are already running (Transceiver is in transmitting or receiving state). The typical example is
related to the burst duration that can be unknown at Burst creation (push-to-talk radio, synchronization
procedure). For these scenarios dedicated services in the Transceiver API are available enabling the
update of some of the parameters of an on-going Burst.

5.2.1.3.3 Baseband signal exchange
The baseband signal is exchanged between the Transceiver Channel and the waveform modem using
packets of baseband samples. A baseband Burst is thus decomposed into one or many baseband
Packets. These packets are transferred between the waveform and the Transceiver by means of
dedicated services in the programming APIs. The size of the Packet is defined at Burst creation for the
Receive channel. For transmission the Packet size may vary from one Packet to another given the
independent invocation of the data transferring or pushing API services.

The Baseband FIFO is a dedicated storage space within the Transceiver implementation where the
samples are temporarily stored. It acts as a buffer for transmission and reception of the samples
composing the baseband Bursts.

The next pictures (extracted from the official specification) provide with a complete view of the key
Transceiver functionalities introduced so far.

CREW - FP7 - GA No. 258301 D3.1

 60

Figure 19: Transceiver functionalities of a Transmit channel

Figure 20: Transceiver functionalities of a Receive channel

5.2.1.3.4 Time management mechanisms
The way the StartTime and the StopTime of the Time Profile (belonging to the Burst Profile) are
specified is a critical concept in the Transceiver. Several approaches are available for providing the
transceiver with such information. The choice of the approach will be depending on the waveform

CREW - FP7 - GA No. 258301 D3.1

 61

characteristics and the Transceiver platform capabilities. Those approaches called Time modes are
explained here.

Undefined Time mode

It is only applicable for the StopTime. In some scenarios the StopTime of a given Burst may not be
known at Burst creation time. It will be provided afterwards (e.g. after a synchronization has been
achieved). For these cases the StopTime parameter adopts the Undefined value, meaning that the
transmission or reception will last until further notice.

Immediate time mode

For some waveforms Burst are created in an asynchronous basis. Others require a radio access to be
performed as soon as possible without further timing details or accuracy. In those cases the Immediate
time mode is preferred for the StartTime and StopTime. Examples could be, the first reception of a
handset following a switch on to start a ranging procedure, or the half-duplex requirements of a push-
to-talk radio where there is no protocol requesting a well-defined slotted frame.

Absolute time mode

This mode makes the assumption that both sides of the interface i.e. waveform modem and transceiver
understand the same time base (they will typically share a common reference clock). StartTime and
StopTime are parameters of the Time profile conveying an absolute time such a date, hour or second at
which the Transceiver should start/stop transmission/reception of Bursts.

Event based time mode

This is the more flexible (and complex) time mode. The shared time references between waveform
modem and Transceiver are limited to a set of well-defined Events and their occurrences. Upon the
occurrence of one of these events the waveform knows the state of the Transceiver and may issue
Burst creation requests based on that Event.

The Events defined in the Specification document are the TransmitStartTime, TransmitStopTime,
ReceiveStartTime and ReceiveStopTime. These Events happen each time the Transceiver starts/stops a
transmission/reception. The way the waveform is aware of the Event occurrence, for example that a
transmission started, is known by means of a dedicated service of the programming API.

Some waveform may even not need to know the event occurrence and issue their Burst creation
requests in a sequential basis, based up on the fact that each Burst Time Profile refers to the previous
radio activation.

The Event based time mode is composed of four identifiers in the specification:

• Event Source Id: The reference Event (TransmitStartTime, TransmitStopTime,
ReceiveStartTime or ReceiveStopTime)

• Event Count Origin: The Event occurrence for starting counting events.

• Event Count: An integer number signaling the number of Events having to occur before
starting any action3.

• Time Shift: An amount of time to wait before performing any action after the Event
occurrence.

5.2.1.4 Interfaces
The following sections describe the APIs enabling the control/command message exchange and data
transfer between the waveform and the transceiver platform. Some examples are provided illustrating
use cases of the interface.

3 Event Count Origin and Event Count parameters are defined in the official Specification. Nevertheless, Transceiver proof-of-
concept implementations have shown that unnecessary complexity stems from their usage. Complete Time Profile information may be
provided without using them.

CREW - FP7 - GA No. 258301 D3.1

 62

The description of the methods (a.k.a. services) provided here is by no means exhaustive. The errors
cases each method may have to deal with are not described. More information may be found within
the official document. Moreover, the handling of the error cases is implementation dependent and may
vary from one transceiver to another.

5.2.1.4.1 Interface methods
The number of available methods on the API is quite reduced following the goal of simplicity. Up to 8
methods are thus proposed: four for the receive channel and four more for the transmit channel. The
usage of all the methods for one waveform is not mandatory. Indeed the usage is depending on the
waveform requirements.

Transmit methods

createTransmitCycleProfile Transmit Burst creation

Method createTransmitCycleProfile(

 Time requestedTransmitStartTime,

 Time requestedTransmitStopTime,

 UShort requestedPresetId,

 Frequency requestedCarrierFrequency,

 AnaloguePower requestedNominalRFPower)

Parameters requestedTransmitStartTime Burst Start Time

requestedTransmitStopTime Burst Stop Time

requestedPresetId Tuning configuration present

requestedCarrierFrequency Carrier frequency

requestedNominalRFPower RF power

This method is used to request the transceiver to configure in order to start a TX burst transmission. The Time Profile
of the Burst is defined by the Time parameters and the Tuning Profile by the Preset, Carrier Frequency and RF power.
The Transceiver will perform the necessary configuration steps to set-up the Tuning Profile. Afterwards, and once the
system time machine reaches the Start Time of the Time Profile, the transceiver will start transmitting a Burst with
whatever data it is available on its internal FIFO buffer.

configureTransmitCycle Enables re-configuration of previously requested transmit Burst

Method configureTransmitCycle(

 Ulong targetCycleId,

 Time requestedTransmitStartTime,

 Time requestedTransmitStopTime,

 Frequency requestedCarrierFrequency,

 AnaloguePower requestedNominalRFPower)

Parameters targetCycleId Identifier for the previously requested Burst

requestedTransmitStartTime New Burst Start Time

requestedTransmitStopTime New Burst Stop Time

requestedCarrierFrequency New Carrier frequency

requestedNominalRFPower New RF power

This method is used to modify the Time Profile and some of the parameters of the Tuning Profile when a
createTransmitCycleProfile() command has been previously issued.

setTransmitStopTime Enables the setting of the Stop Time for an on-going Transmit Burst

Method setTransmitStopTime(

 Ulong targetCycleId,

 Time requestedTransmitStopTime)

CREW - FP7 - GA No. 258301 D3.1

 63

Parameters targetCycleId Identifier for the previously requested Burst

requestedTransmitStopTime On-going Burst Stop Time

This method is dedicated to the setting of the Stop Time of a Burst that is already on-going and that had an undefined
Stop Time. The methods allow for stopping Transmission Burst with and unknown duration at the creation invocation
time.

pushBBSamplesTx Enables the data exchange from the waveform to the Transceiver

Method pushBBSamplesTx(

 BBPacket thePushedPacket,

 Boolean endOfBurst)

Parameters thePushedPacket I&Q data packet

endOfBurst End of Burst signalling boolean

This method is designed for carrying data between waveform and Transceiver. The endOfBurst flag lets the
Transceiver know the last packet of a set of packets composing a single Burst.

Receive methods

createReceiveCycleProfile Receive Burst creation

Method createReceiveCycleProfile (

 Time requestedReceiveStartTime,

 Time requestedReceiveStopTime,

 Ulong requestedPacketSize,

 UShort requestedPresetId,

 Frequency requestedCarrierFrequency)

Parameters requestedTransmitStartTime Burst Start Time

requestedTransmitStopTime Burst Stop Time

requestedPacketSize Packet size for transferring incoming data

requestedPresetId Tuning configuration present

requestedCarrierFrequency Carrier frequency

This method is used to request the transceiver to configure in order to start a RX burst reception. The Time Profile of
the Burst is defined by the Time parameters and the Tuning Profile by the Preset and Carrier Frequency. The
Transceiver will perform the necessary configuration steps to set-up the Tuning Profile. Afterwards, and once the
system time machine reaches the Start Time of the Time Profile, the transceiver will start receiving a Burst. The I&Q
data will be stored within its internal FIFO buffer. The PacketSize parameter sets the size of the packets that will be
exchanged between the Transceiver and the waveform.

configureReceiveCycle Enables re-configuration of previously requested receive Burst

Method configureReceiveCycle (

 Ulong targetCycleId,

 Time requestedReceiveStartTime,

 Time requestedReceiveStopTime,

 Ulong RequestedPacketSize,

 Frequency requestedCarrierFrequency)

Parameters targetCycleId Identifier for the previously requested Burst

requestedReceiveStartTime New Burst Start Time

requestedReceiveStopTime New Burst Stop Time

RequestedPacketSize New Packet Size

requestedCarrierFrequency New Carrier frequency

This method is used to modify the Time Profile and some of the parameters of the Tuning Profile when a

CREW - FP7 - GA No. 258301 D3.1

 64

createReceiveCycleProfile() command has been previously issued.

setReceiveStopTime Enables the setting of the Stop Time for an on-going Receive Burst

Method setReceiveStopTime (

 Ulong targetCycleId,

 Time requestedReceiveStopTime)

Parameters targetCycleId Identifier for the previously requested Burst

requestedReceiveStopTime On-going Burst Stop Time

This method is dedicated to the setting of the Stop Time of a Burst that is already on-going and that had an undefined
Stop Time. The methods allow for stopping Reception Burst with and unknown duration at the creation invocation
time.

pushBBSamplesRx Enables the data exchange from the Transceiver to the waveform

Method pushBBSamplesRx(

 BBPacket thePushedPacket,

 Boolean endOfBurst);

Parameters thePushedPacket I&Q data packet

endOfBurst End of Burst signalling boolean

This method is designed for carrying data between Transceiver and waveform. The endOfBurst flag lets the waveform
know the last packet of a set of packets composing a single Burst.

5.2.1.4.2 Example use cases for Bursts Time Profile configuration
For reference a few uses cases for a TDD waveform are presented here. These use cases are basically
depicting the usage and combination of the different Time Profile modes.

 Setting the Transceiver for a Transmit Burst, starting immediately for a well-defined duration

Modem XCVR

createTransmitCycleProfile

requestedTransmitStartTime
IMMEDIATE

requestedTransmitStopTime
EVENTBASED
eventSourceId == TransmitStartTime
eventCountOrigin == next
eventCount == 0
TimeShift == Burst duration

EVENT
TransmitStart

Time

Transmit

requestedTransmitStopTime

Shift (Burst duration)

XCVR Latency

CREW - FP7 - GA No. 258301 D3.1

 65

The above diagram depicts how the requestedTransmitStartTime parameter is set to Immediate Time
mode in order to request the Transceiver to open a transmit window for a Burst as soon as possible.
The assumption is made that the exact timing or instant of the time base at which the transmission
starts has no relevance. The exact duration of the Burst, on the other hand, has to be well defined.
Thus the requestedTransmitStopTime is set in Event Based Time mode using the TransmitStartTime as
reference event source and a TimeShift equal to the targeted Burst duration. eventCountOrigin is set to
next, meaning that the next occurrence of the selected event source will be the reference event.
eventCount is set to zero.

Setting the Transceiver for Receive Burst with accurate timing regarding the previous Transmit
Burst

Modem XCVR

createReceiveCycleProfile

requestedReceiveStartTime
EVENTBASED
eventSourceId == TransmitStartTime
eventCountOrigin == Previous
eventCount == 0
TimeShift == TX + GT

requestedReceiveStopTime
EVENTBASED
eventSourceId == TransmitStartTime
eventCountOrigin == Previous
eventCount == 0
TimeShift == TX + GT + RX

EVENT
TransmitStartTime

Transmit

requestedReceiveStopTime

Shift= Transmit Burst + Guard Time

Receive

Shift=Transmit Burst + Guard Time + Receive Burst

requestedReceiveStartTime

In this diagram the previous Transmit Burst is used in order to get the reference events enabling
accurate timing. Therefore both the requestedReceiveStartTime and requestedReceiveStopTime
parameters are set in Event Based Time mode, with an eventSourceId equal to the TransmitStartTime.
Previous TransmitStartTime event is well known by the Transceiver since it controlled the starting
time of the previous Burst. eventCountOrigin is set to previous to reference the previous event
occurrence. TimeShift indicates the shifting in time regarding the event occurrence, hence the
TimeShift for the StartTime is set to the previous Transmit Burst duration plus the guard time and the
StopTime TimeShift to the same amount plus the Receive Burst duration itself.

CREW - FP7 - GA No. 258301 D3.1

 66

Undefined duration Receive Burst

Modem XCVR

createReceiveCycleProfile

requestedReceiveStartTime
IMMEDIATE

requestedReceiveStopTime
UNDEFINED

EVENT
ReceiveStartTime

Receive

requestedReceiveStopTime unknown
RX window keeps open

requestedReceiveStartTime

XCVR Latency

This use case could be a typical use case for a synchronization acquisition procedure. The
requestedReceiveStartTime is set to Immediate Time mode to start the searching procedure at a given
time. The waveform does not know “a priori” the amount of time getting synchronization could take
so the requestedReceiveStopTime is set to Undefined Time mode. The waveform will decide later on
(next diagram) when to stop the Receive Burst.

CREW - FP7 - GA No. 258301 D3.1

 67

Stopping the synchronization procedure

Modem XCVR

setReceiveStopTime

requestedReceiveStopTime
EVENTBASED
eventSourceId == ReceiveStartTime
eventCountOrigin == Previous
eventCount == 0
TimeShift == shift (ex Seek time + delta us)

EVENT
ReceiveStartTime

Receive

requestedReceiveStopTime

Shift (ex 3 + 1 ms)

Seek interval

delta

In the diagram it is assumed that for some reason the synchronization procedure has to stop at a well-
defined time (for example to keeping track of frame slotted structure). Under this assumption the
waveform has to take advantage of the only event known by the Transceiver sub-system i.e. the
ReceiveStartTime. The waveform will use the requestedReceiveStopTime and complete the parameter
data with a TimeShift encompassing the searching time plus some margin to avoid requesting for an
StopTime that has already been reached (late request).

5.2.2 IMEC interfaces
Two implementations of the imec sensing engine are developed. The base platform for both prototypes
is the SPIDER board: a PCB containing a USB interface to connect to the host, an FPGA to connect
the different components on the board to each other and a DIFFS chip. Via an SAMTEC connector
and second board can be plugged on containing the RF section, including ADC/DAC operation. Two
implementations will be available:

• A board containing an RF section using the imec SCALDIO IC. This IC contains a full RF
transceiver including analog to digital conversion. A picture of this setup is shown in figure
Figure 21.

• A combination of two boards: the WARP board, containing and RF IC and ADC/DAC
blocks and a second board which serves mainly as interconnect between connectors on the
SPIDER and WARP board.

Since both RF ICs have different capabilities the programming options will differ between the two
solutions but the same API is used to control the settings.

CREW - FP7 - GA No. 258301 D3.1

 68

Figure 21: SPIDER and SCALDIO sensing prototype

The hardware abstraction layer is implemented in ANSI C and runs on the host PC. This HAL hides
the USB driver from the user and provides functions that are used in the API to implement high level
function calls. How it connects to an IBBT w-iLab.t node is shown in Figure 22,t he block labelled
HW is the actual sensing engine.

Figure 22: sensing engine connected to wilab node

An overview of the HAL functions is provided below:
Table 4: Sensing engine HAL functions

Function prototype Description

id = se_open Function to open the sensing engine hardware. A
handler to identify the sensing engine is returned.

se_config(id, RF struct, DIFFS struct) Function to configure the sensing engine. This
function requires an identifier for the hardware, a
struct containing all RF settings and a struct
containing all DIFFS settings.

se_start_measurement(id,pointer_to_result) This function will start the actual with the
configuration as set by se_config. The function
requires an identifier to the device to start and a
pointer to where the measurement result needs to
be stored.

se_stop_measurement(id) This function will stop an acitve measurement on

CREW - FP7 - GA No. 258301 D3.1

 69

a device with identifier id.

se_close(id) Function to close the connection to the device
identified by id

Two structs are used to configure the complete sensing engine. The parameters for the RF struct are
listed in Table 5.

Table 5: RF struct parameters

RF struct

BW Baseband filter settings

GAIN Gain value for the complete RX chain

RF RF frequency setting

The blocks where these parameters have impact can be clearly seen on the block diagrams of the
SCALDIO chip below: BW (left), Gain (middle) and RF frequency (right)

Figure 23: SCALDIO chip block diagrams

The parameters on the DIFFS struct are listed in Table 6.
Table 6: DIFFS struct parameters

DIFFS struct

AGRAC_FW Pointer to the location of the firmware for the
Automatic Gain and Resource Allocation
Controller.

SENSEPRO_FW Pointer to the location of the firmware for the
SENSPRO processor on the DIFFS chip

DATAPATH Struct containing all parameters to set up the
datapath leading to the SENSEPRO processor
correctly.

The blocks to which the different parameters apply can be identified in the block diagrams of the
DIFFS chip below: AGRAC_FW (left), SENSEPRO_FW (middle) and DATAPATH (right)

CREW - FP7 - GA No. 258301 D3.1

 70

Figure 24: DIFFs chip block diagram

To enable the user to correctly program the sensing engine without knowing the specifics of the
hardware components a high level user API is available. An overview of the high level API function
calls is provided in Table 7.

Table 7: user API description

Function prototype Description

id = crew_open This functions enable the connection to
the sensing engine and returns an
identifier which is to be used in the
following function calls in order to
address the correct sensing engine

crew_channel(id,mode,channel,detector,pointer_to_results) This function handles the complete
configuration of the sensing engine. 5
Parameters are used to describe the
configuration

• id: identifier to the address the
correct sensing engine

• mode: selection of the correct
wireless standard

• channel: select the desired
channel

• detector: selection of the
wanted detection algorithm to
run on the DIFFS

• pointer_to_result: pointer to
where the result of the sensing
operation should be stored

crew_ism_sweep(id,detector,pointer_to_results) This function implements a sweep of
the complete ISM band. The user can
select the detection algorithm via the
detector parameter

crew_dvb_sweep(id,detector,pointer_to_results) This function is only available on when
the sensing engine is equipped with a

 AGRAC

DCO/IQ
compensation

FE data
RX interface

FE control
RX interface

Halfband filter

Halfband filter

CIC filter

Flexible
FIR filter

Resampler

 RX buffer

Host data
RX interface

Correlator
core DMEM

32-slot SIMDScalar
slot

FFT

Rotation
accellerator

Mixer

 AGRAC

DCO/IQ
compensation

FE data
RX interface

FE control
RX interface

Halfband filter

Halfband filter

CIC filter

Flexible
FIR filter

Resampler

 RX buffer

Host data
RX interface

Correlator
core DMEM

32-slot SIMDScalar
slot

FFT

Rotation
accellerator

Mixer

DCO/IQ
compensation

 RX buffer

 AGRAC

FE data
RX interface

FE control
RX interface

Halfband filter

Halfband filter

CIC filter

Flexible
FIR filter

Resampler

Host data
RX interface

Correlator
core DMEM

32-slot SIMDScalar
slot

FFT

Rotation
accellerator

Mixer

CREW - FP7 - GA No. 258301 D3.1

 71

SCALDIO RF section. A sweep across
all channels in the DVB band is carried
out and the result is stored in the
location specified in pointer_to_results.
The user can select the detection
algorithm via the detector parameter.

crew_close(id) This function closes the connection to
the sensing engine and cleans up the
environment.

Depending on the configuration of the sensing engine, either with a SCALDIO RF section or with a
WARP RF section, different settings for the mode, channel and detector variables are possible. An
overview is provided below.

Available parameters via the user API in case a WARP RF section is used:

• Detector

o Algorithm

 Power measurement (vs. threshold)

 FFT (vs threshold) - [32/64/128] bins

o Gain configuration

 Automatic Gain Control

 Fixed gain

• Mode/channels

o Bluetooth / 1 to 80

o Zigbee / 1 to 15

o WLANg / 1 to 13

o WLANn / 1 to X

Since the SCALDIO RF section supports a wider range of frequencies more modes are available in
case this RF section is used. Additionally some detection algorithms related to the wireless standards
operational in these frequencies are also available. An overview is provided below:

• Detector

o Algorithm

 Power measurement (vs. threshold)

 FFT (vs. threshold) - [32/64/128] bins

 LTE multiband energy detection

 Cyclostationary [2k-8k] / Guard interval [1/4-1/8-1/16-1/32]

o Gain configuration

 Automatic Gain Control

 Fixed gain

• Mode/channels

o Bluetooth / 1 to 80

o Zigbee / 1 to 15

CREW - FP7 - GA No. 258301 D3.1

 72

o WLANg / 1 to 13

o WLANa / 1 to X

o WLANn / 1 to X

o LTE / channels to be determined

o DVB-T / 1 to 69

This selection of algorithms, modes and channels should provide enough flexibility for the common
user, if not the user can resort to the HAL to gain more in depth access to the hardware.

5.3 Combined virtual components description

5.3.1 LTE detector simulation environment

5.3.1.1 Simulation environment
In order to validate the multi-antenna LTE detection algorithm described in section 0, a spatial LTE
simulation environment was developed as described in Figure 25.

Firstly, an LTE signal database was built using TUD “LTE testbed reference signal generator”. Signals
with transmission characteristics (bandwidth, physical layer cell identity, CP length, scrambling, etc.)
were generated and stored into files. These files will allow testing the algorithms in various LTE
modes. These signals are perfect (no noise, no propagation channel, no interference, no frequency
offset) and their goal is to check the good understanding of the LTE standard and to validate the
algorithms in perfect environment.

Secondly, the LTE signal files generated during the first step are used as an input to the multi-antenna
propagation channel simulator. This simulator, described in section 5.3.1.2 can simulate the signal
received by a UE from several LTE BTS (or from various RATs emitters), taking into account the
spatial locations of the BTS, the multipath of the signals from each BTS, the reception noise, the
relative received power from each BTS, etc. The goal is to validate the detection algorithm in a more
realistic but known environment. The advantages of the multi-antenna approach will be proved.

It is important to underline that the first signal (the useful signal to be detected) is always an LTE
signal, but depending on the simulated scenario, the other signals can be either LTE signals or a non-
LTE signal (a secondary user in CR-oriented use case).

TCF multi-antenna LTE
detector

TCF spatial propagation channel simulatorTUD LTE signal
generator

LTE BTS 1

LTE BTS 2

LTE BTS K

Spatial propagation
channel simulator

Spatial propagation
channel simulator

Spatial propagation
channel simulator

P1

P2

PK

Additive white
Gaussian noise Reception filter

1

1

1

M

M

M

M M
LTE processing

M

Figure 25: Spatial LTE simulation environment

CREW - FP7 - GA No. 258301 D3.1

 73

5.3.1.2 Spatial propagation channel model
In the context of mobile communications, it is well established that the distortions induced by the
propagation channel between the transmitter and the receiver deeply influence the performance of the
demodulation algorithms. Moreover as the algorithms proposed in section 0 are using an antenna array
and antenna processing, it is thus crucial to be able to reliably simulate the propagation channels
between the active emitters and the M receivers. The multi-channel propagation model used for the
algorithmic study is an extension of the classical Clarke mono-channel model [1].

The Clarke model allows taking into account the situation of a moving device at speed v. The antenna
array receives different plane waves due to multiple reflections on various obstacles (near or far
obstacles):

• With random amplitudes,

• With random phases,

• With random directions of arrival,

At the propagation channel output, the received signal in base-band is given by the following
expression:

x(𝑡) = �𝑎𝑙𝑑(𝑡 − 𝜏𝑙) �� 𝑐𝑛,𝑙𝑒𝑗�2𝜋𝑣/λ cos�𝜃𝑛,𝑙−𝛾�𝑡+𝜑𝑛,𝑙�s𝑛,𝑙

𝑁𝑙

𝑛=1

�
𝐿

𝑙=1

 Eq. 5-27

where:

• 𝑑(𝑡) is the useful modulated signal,

• x(𝑡) is the received signal vector,

• L is the number of paths,

• al is the attenuation of the lth path (a path is due to a reflection on a far obstacle),

• τl is the delay of the lth path,

• Nl is the number of elementary sub-paths associated to the lth path. The sub-paths are due to
the multiple reflections typically all around the device. All sub-paths associated to a path are
considered to have the same delay (the delay differences are negligible compared to the
inverse of the signal bandwidth),

• cn,l is the attenuation of the nth sub-path associated to the lth path,

• v is the device speed,

• γ is the angle between the device speed and the North (randomly uniformly distributed
[0, 2π]),

• λ is the wavelength,

• θn,p is the azimuth of the nth sub-path associated to the lth path, (see Figure 26 for the
orientation conventions),

• ϕn,l is the phase of the nth sub-path associated to the lth path (randomly uniformly distributed
[0, 2π]),

CREW - FP7 - GA No. 258301 D3.1

 74

• s𝑛,𝑙 is the steering vector of the nth sub-path associated to the lth path. The steering vector
depends on the array geometry and on the direction of arrival of the sub-path:

• s𝑛,𝑙 = �𝑒𝑗∆φ𝑛,𝑙,1 ⋯ 𝑒𝑗∆φ𝑛,𝑙,𝑀�
T

,

where:

• M is the number of antennas

• ∆φ𝑛,𝑙,𝑘 is the geometric phase shift of the n sub-path associated to the lth path between the
kth antenna and the array centre:

• ∆φ𝑛,𝑙,𝑘 = 2𝜋(𝑅𝑘/λ) cos�𝜃𝑛,𝑙 − 𝛼𝑘�,

where:

• (𝑅𝑘 ,𝛼𝑘) are the polar co-ordinates of antenna k.

x (East)

y (North)
pth sub-path associated to nth path

θn,p

antenna k

αk Rk

Figure 26: Orientation convention for the measure of angles

In this model, all the parameters are stationary. The only variations are due to the device speed, which
generates a fading variation of the received signal on each antenna. When the device is not moving,
there is spatial diversity (each antenna has its own fading level), but this spatial diversity is stationary.

In short, our propagation model can be used to simulate various scenarios, including:

• Stationary propagation conditions: Nl = 1. The user chooses all the parameters for the
simulation. This simple scenario is essentially used in order to validate the algorithms.

• Rayleigh fading: all the paths have the same number of sub-paths (Nl = 10 for all the
simulations) with the same amplitude: cn,l = 1/sqrt(Nl).

• Rice fading: the first sub-path has a higher amplitude than the other paths (c0,l
>cn,l = 1/sqrt(Nl). The relative amplitude of the different sub-paths is an input parameter.

Finally, the various angles of arrival θn,l are chosen randomly and uniformly distributed in an angular
reception cone.

5.3.2 Combining the imec spectrum sensing agent and the IBBT w-iLab.t

5.3.2.1 Motivation
Wireless testbeds come in different sizes and flavours. While some testbeds focus on physical layer
phenomena, other testbeds focus on higher layers of the OSI stack and are used to design and evaluate
protocols for wireless networks, ranging from MAC to application layer.

CREW - FP7 - GA No. 258301 D3.1

 75

The testbeds of the latter category, typically offer the possibility to collect basic packet-level statistics,
such as the number of packets sent or received over the wireless interface, the number of packets that
are received but cannot be decoded due to a CRC error, or the number of packets that failed to be sent.
While in these testbeds, the physical layer might not be the topic of primary interest, the behaviour of
the physical layer and state of the wireless medium is a crucial factor influencing the outcome of the
experiments. For example, in the event that the wireless medium in the environment of the testbed is
heavily loaded, high packet loss rates will usually result in protocols performing worse than in an
environment without any RF interference in the frequency range of interest.

When developing cognitive networking protocols, accurate characterization of the RF spectrum
becomes more important. Advanced spectrum sensing solutions are then important, both (1) to
provide input to the cognitive protocols – indeed, cognitive protocols cannot decide on how to adapt to
the current wireless environment if they are not capable of sampling the RF spectrum; and (2) to
accurately monitor the RF spectrum range of interest before, during, and after the experiment, thus
enabling the testbed to report on the “quality” of newly developed protocols and provide information
on the spectral efficiency.

By integrating the imec spectrum sensing agent in the IBBT w-iLab.t, the two above goals were
achieved during the first year of the CREW project.

5.3.2.2 Implementation and possibilities
Figure 27 gives an overview of how the integration between the imec spectrum sensing agent and the
w-iLab.t is realized.

Figure 27: schematic overview of the integration

The sensing agent is currently preconfigured to continuously scan the 2.4 GHz ISM spectrum (an
implementation for the 5 GHz would be possible as well). The sensing agent produces power spectral
density (PSD) values at a high rate (up-to-date figures are available the portal). Per 20MHz bandwidth,
the sensing agent performs an FFT with 128 bins. Thus, the sensing agent provides a single PSD
value for every bin of 156250 Hz. In the current set-up, a 120 MHz band is scanned (2.39 GHz – 2.51
GHz), resulting in 768 bins.

In order to limit the amount of information sent to the embedded PC, the sensing agent pre-processes
measurements in real-time: per frequency bin, the maximal PSD out of a window of n consecutive
PSD measurements per frequency bin is determined, with n=3 in the current implementation The
choice to use a the maximum value rather than an average value, was made because we are currently

CREW - FP7 - GA No. 258301 D3.1

 76

primarily interested in detecting whether or not a specific part of the frequency spectrum was in use
during a certain timeslot.

The result is that the embedded PC grabs the 768 bins ca. 60 times per second. To reduce the amount
of raw data by a factor 20, a max hold filter was implemented in software on the embedded PC. The
resulting bins are transmitted over a UDP socket about 3 times per second to the database (mysql-
server) and are inserted by a bash script into circular buffer table which can store the samples for one
day.

 These measurements are then stored in the database of the testbed using following format:

Table 8: database format

created
[mySql timestamp,
added when received in
the database]

createdus
[actual timestamp,
added on the embedded
PC]

seID
[unique identification
of the spectrum engine
reporting the values]

sensingEngineData
[1 PSD value per
frequency bin]

As can be seen from the Table 8 above, a unique identifier is attributed to each of the sensing engines.
This makes it possible to support multiple spectrum sensing engines in the network, and to link the
PSD values to a specific device and thus location in the network. Moreover, a timestamp is added to
the PSD values as soon as they are measured (createdus). As this timestamp is synchronized with the
other logging mechanisms operational in the testbed, each PSD value can be linked to a specific
moment in time, e.g. the transmission of a packet. As such, a spatio-temporal view of the frequency
occupation in the testbed becomes possible, thus complementing the packet-level information that was
already available before this integration was completed.

Once these values are stored in the database, the w-iLab.t uses its generic analyser and visualizer tools
to present the spectrum information directly to the user in real-time. For performance reasons, the
visualizer updates at a slower rate than the values are stored in the database. However, note that the
more fine-grained information is still available in the database, and may be used in this form by the
experimenter.

5.3.2.3 Additional possibilities and future work
The integration approach, as followed above, can also be used on top of other testbeds, with minimal
adjustments. Moreover, the tools that were and will be developed to visualize and process the spectral
measurements may be used in other test facilities as well.

In the case of the w-iLab.t testbed, due to regulatory limitations, wireless nodes are only allowed to
transmit in the 2.4 GHz (and 5 GHz) ISM band. Therefore, the configuration of the sensing engine in
our integration is set fixed, scanning only the 2.4 GHz ISM band. Moreover, in the current
implementation, configuration parameters such as the number of reports per second are also set to a
fixed value. These settings should not be considered as limitations: they are purely a matter of
configuration. Additional configuration settings will be available in the future.

Furthermore, a set of metrics is to be automatically determined during experiments, based on the
spectral measurements obtained from the sensing engines.

CREW - FP7 - GA No. 258301 D3.1

 77

6 Conclusion
This document gave a detailed description of the CREW federated cognitive radio testbed in its first
basic operational stage.

It began with a short overview of the available equipment in the different wireless communication
testbeds. The IRIS SDR testbed of TCD is a highly reconfigurable software radio platform with
software based on C++ and XML, and hardware based on GPPs. The IRIS software radio platform is
complemented by a physical layer testbed consisting of USRPs acting as RF frontends, a vector signal
generator and a spectrum analyzer. The whole testbed can be controlled remotely via the internet using
an SSH connection. The TWIST testbed at TUB is a multi-platform hierarchical sensor network
testbed comprising 102 eyesIFX and 102 Tmode Sky wireless sensor nodes. Additionally, multiple
low-cost USB spectrum analyzers and multiple shimmer2r sensor nodes for mobile BAN test cases are
provided to experimenters. Also the TWIST testbed can be controlled remotely via the internet. The
imec sensing platform enables users to perform spectrum sensing experiments by either
reprogramming the hardware or accessing captured I/Q samples. The imec spectrum sensing platform
can be integrated into other systems or testbeds using its USB interface, allowing access to all
measurement data as well as to configure and to control the device. An API and a HAL are provided to
integrate the sensing device with a host computer. Either already existing sensing algorithms can be
uploaded and used on the device, or customized algorithms developed by the experimenters can be
used. The IBBT w-iLab.t testbed consists of 200 wireless sensor nodes installed in an office
environment, as well as 60 nodes located in a shielded environment without external interference. All
nodes operate in the 2.4 GHz and the 5 GHz ISM bands. 10 imec sensing nodes and 8 USRPs
complement this equipment for cognitive radio experiments. The hardware installation comes along
with a wide range of tools and software for experimentation and a benchmarking framework to create
reproducible wireless environments and to assess the experimentation results. All devices are
accessible via the internet. Users can modify the testbed with custom firmware, software drivers and
protocols. The multi-antenna LTE detection algorithm offered to experimenters is an advanced method
to detect even weak base stations in the LTE spectrum based on the detection of the primary and
secondary synchronization signals.

The available testbed equipment can be used in different ways. Mixing and matching different hard-
and software components creates “virtual components” with new functionalities. A prerequisite is the
precise definition and description of the component interfaces. An example for such an interface is the
Transceiver Facility API that specifies the interface between the radio transceiver and the signal
processing unit of an SDR system. It is based on the concept of bursts of baseband samples that are
transmitted between signal processing unit and transceiver. Also for the imec sensing agent a HAL
interface has been specified and described that makes the devices accessible via USB. The LTE multi-
antenna sensing approach can be accessed and tested using a defined spatial LTE simulation
environment, consisting of an LTE signal database, a special propagation channel simulator and the
signal processing of the detector.

With this set of information, this document can be seen as a reference for the usage of the CREW
testbed by internal and external experimenters regarding the capabilities and the usability of the
available equipment.

CREW - FP7 - GA No. 258301 D3.1

 78

7 References

[1] R.H. Clarke, “A statistical theory of radiomobile reception”, Bell Syst. Tech. J. 47, pp. 957-1000
(1968)

[2] L.E. Brennan, I.S. Reed, “An adaptive array signal processing algorithm for communications”,
IEEE Trans. Aerospace and Electronics Systems., vol. AES 18, N°1, January 1982.

[3] Federal Communications Commission, “Second memorandum opinion and order,” FCC 10-174,
Sept. 2010

[4] "IEEE Standard for Spectrum Sensing Interfaces and Data Structures for Dynamic Spectrum
Access and other Advanced Radio Communication Systems.," IEEE Std 1900.6-2011 , vol., no., pp.1-
168, April 22 2011 doi: 10.1109/IEEESTD.2011.5756728

[5] E. Nicollet “Transceiver Facility Specification” SDRF-08-S-0008-V1.0.0, January 28, 2009.

[6] http://www.cpri.info/spec.html

[7] http://www.obsai.org/

[8] http://www.mipi.org/specifications/digrfsm-specifications

CREW - FP7 - GA No. 258301 D3.1

 79

8 Appendix A: CREW Portal
Please note that the Portal is optimized for viewing in a browser. In the snapshot below, some of the
pictures are resized to better fit the A4 page format of the deliverable. For an up-to-date and
interactive version of the portal, please consult the public portal at www.crew-project.eu/portal.

Figure 28 - screenshot of the CREW portal welcome page

CREW - FP7 - GA No. 258301 D3.1

 80

Figure 29 - Screenshot of the sortable "short overview" tables (1/2)

CREW - FP7 - GA No. 258301 D3.1

 81

Figure 30 - Screenshot of the sortable "short overview" tables (2/2)

Note to the reader of this deliverable: the following pages are generated from the printer-friendly
version of the “advanced information section” on the CREW portal. Please note that in some cases,
this web document contains links that refer to external websites and documents for more details. They
have not been included in this deliverable but are accessible online.

CREW - FP7 - GA No. 258301 D3.1

 82

Portal: advanced documentation
The sections below contain advanced information on the different CREW testbeds. For
information on the benchmarking platform, please consult the section of the w-iLab.t
testbed on benchmarking. You can use the menu on the left of this website to navigate
through the portal. You can use the menu on the left of this website to navigate through the
portal.

The information on the portal will be regularly as additional information and cognitive
components become available.

Schematic overview
Please click the thumbnail extracts below to get a full screen view of the different

infrastructures. After clicking the thumbnails, click to zoom in. The images may also be
downloaded on the bottom of this page.

Attachment Size
wilab-UsageOverview.png 158.04 KB
wilab-HardwareOverview.png 183.3 KB
TWIST-UsageOverview.png 119.91 KB
TWIST-HardwareOverview.png 114.63 KB
IrisTestbed-HardwareOverview.png 183.23 KB
IrisTestbed-UsageOverview.png 208.95 KB

http://www.crew-project.eu/portal/wilab/setting-your-own-benchmarking-experiments
http://www.crew-project.eu/portal/wilab/setting-your-own-benchmarking-experiments
http://www.crew-project.eu/sites/default/files/wilab-UsageOverview.png
http://www.crew-project.eu/sites/default/files/wilab-HardwareOverview.png
http://www.crew-project.eu/sites/default/files/TWIST-UsageOverview.png
http://www.crew-project.eu/sites/default/files/TWIST-HardwareOverview.png
http://www.crew-project.eu/sites/default/files/IrisTestbed-HardwareOverview.png
http://www.crew-project.eu/sites/default/files/IrisTestbed-UsageOverview.png

CREW - FP7 - GA No. 258301 D3.1

 83

Attachment Size
LTE-UsageOverview.png 88.02 KB
LTE-HardwareOverview.png 185.32 KB

IRIS documentation
The reconfigurable radio consists of a general-purpose processor software radio engine,
known as IRIS (Implementing Radio in Software) and a minimal hardware frontend. IRIS can
be used to create software radios that are reconfigurable in real-time.

Please use the links below to learn more about how Iris can be used.

Testbed Description
Iris is a software radio architecture that has been developed by CTVR, The
Telecommunications Research Centre at TCD, Written in C++, Iris is used for constructing
complex radio structures and highly reconfigurable radio networks. Its primary research
application is to enable a wide range of dynamic spectrum access and cognitive radio
experiments. It is a GPP-based radio architecture and uses XML documents to describe the
radio structure. This testbed provides a highly flexible architecture for real-time radio
reconfigurability based on intelligent observations the radio makes about its surroundings.

Each radio is constructed from fundamental building blocks called components. Each
component makes up a single process or calculation that is to be carried out by the radio. For
instance, a component might perform the modulation on the signal or scale the signal by a
certain amount. Each component supports one or more data types and passes datasets to other
components, along with some metadata such as a time stamp and sample rate. There is a data
buffer between each component to ensure the data is safe, even if one component is
processing data much faster than another.
All components within the radio exist inside an engine. An engine is the environment in
which one or more component operates. Each engine defines its own data-flow and
reconfiguration mechanisms and runs one or more of its own threads. As with components,
each engine is linked by a data buffer. Iris currently features two data types, the PN Engine
and the Stack Engine. The PN engine is typically used for PHY layer implementations and is
designed for maximum flexibility. It has a unidirectional data flow and runs one thread per
engine. The Stack Engine is designed for the implementation of the network stack
architecture, where each component is a layer within the stack and runs its own thread of
execution. It also has a bidirectional data flow.

Iris’s capability to reconfigure the radio on the fly lies in the controllers. A controller exists
independently of any engine and runs in its own thread of execution. A controller subscribes
to events within components and reconfigures parameters in other components based on the
observation of these events. For instance, a controller could be set up to observe the number
of packets passing through a certain component and, upon reaching a certain number of
packets, change the operating frequency of the radio.

http://www.crew-project.eu/sites/default/files/LTE-UsageOverview.png
http://www.crew-project.eu/sites/default/files/LTE-HardwareOverview.png

CREW - FP7 - GA No. 258301 D3.1

 84

The Iris 2.0 architecture is illustrated in Figure 2.
A radio is constructed and configured using XML documents. Each component is named and
has its inputs, outputs and exposed parameters explicitly specified. Engines are declared and
components are placed in their relevant engines. Controllers are then declared at the top of the
XML document and the links between each component are declared at the end of the
document.

The hardware components of the testbed at TCD consists of four Quad core machines, each of
which has either a USRP 1 or a USRP 2 and RFX2400 daughterboard connected to it. The
USRP (Universal Software Radio Peripheral) is a family of hardware used as an RF frontend
for software radios. The USRP 1’s have an 8MHz bandwidth and the USRP 2’s have a
24MHz bandwidth (using Gigabit Ethernet to communicate between the USRP and the
computer). The daughterboards are capable of transmitting between 2 and 2.9 GHz.

Apply for an account
Remote access

The testbed is designed to permit fully remote access for carrying out experiments. This page
provides information required to use the testbed from a remote location.

To use the Iris testbed you first require a user account to log onto the ctvr-gateway server.
These can be applied for by emailing either tallonj@tcd.ie or finnda@tcd.ie explaining the
nature of the experimentation desired to be carried out. Due to limitations in the number of
nodes available applications must be handled on a case by case basis.

Scheduling an experiment

On receiving login details, the experimenter will also be issued with access to the Google
calendar used for scheduling experiments. It is essential to schedule experiments, specifying
which nodes are to be used, prior to use of the testbed. An example shot of the calendar is
shown below.

mailto:tallonj@tcd.ie
mailto:finnda@tcd.ie

CREW - FP7 - GA No. 258301 D3.1

 85

VNC access

Once login details for the ctvr-gateway server are received, use them to login to ctvr-
gateway.cs.tcd.ie via SSH. Once you have a terminal for this server open, SSH again onto the
node you wish to access as follows:

ssh nodeuser@ctvr-node07.cs.tcd.ie

vncserver :1 -geometry 1280x900

This will create a vncserver on display 1 of node 07 and with a 1280x900 screen resolution.
Once the server is running, use a VNC client to connect. In this case, we would connect to
ctvr-node07.cs.tcd.ie:1. When you are finished, kill the VNC server on the testbed node as
follows:

vncserver -kill :1

Powering the USRPs

We have installed a remote power switch which allows us to remotely power each of the
USRPs on and off. This switch can be controlled through web interface. Access the switch by
navigating to http://ctvr-switch.cs.tcd.ie in your web browser. The login details are identical
to those used to access the nodes themselves. Here, you can power the USRPs for each node
on and off. Please remember to power USRPs off when you have finished using them.
The following diagram shows the positioning of the different testbed nodes as well as the
spectrum analyser and signal generator.

mailto:nodeuser@ctvr-node07.cs.tcd.ie
http://ctvr-switch.cs.tcd.ie/

CREW - FP7 - GA No. 258301 D3.1

 86

Powering the USRPs via command line/scripts

The remote switch can also be accessed via HTTP Post commands, using a tool such as curl,
or equivalent calls in a script or program. Using a UNIX based system with curl installed

curl --data 'P<port>=<command>' http://nodeuser:ctvrnodepass@ctvr-
switch.cs.tcd.ie/cmd.html

will alter the state of socket <port> according to <command>. <port> choices are as follows:

CREW - FP7 - GA No. 258301 D3.1

 87

* 1 - Node 5 USRP N210 (ETH1)
* 2 - Node 6 USRP N210 (ETH1)
* 3 - Node 7 USRP N210 (ETH1),E100 (ETH2)
* 4 - Node 8 USRP N210 (ETH1)

<command> choices are:

* 0 - Switch Off
* 1 - Switch On
* t - Toggle state
* r - Restart

Commands to multiple ports can be strung together using ampersands, as per the following
example:

curl --data 'P0=r&P1=r&P2=r' http://nodeuser:ctvrnodepass@ctvr-
switch.cs.tcd.ie/cmd.html

Spectrum Analyser Remote Access

The main spectrum analyser in the testbed room is a Rohde & Schwarz FSVR real-time
analyser.

* Host name: ctvr-analyser.cs.tcd.ie
* IP address: 134.226.55.156
* Frequency range: 10Hz - 7GHz
* Real-time analysis with persistence
* Support for IQ analysis (inc. OFDM)
* Maximum sampling rate for IQ acquisition: 128MS/sec

Remote access via VNC

* Verify that the analyser is switched on and connected to the network by pinging it using

ping ctvr-analyser.cs.tcd.ie

* Use a VNC client to connect to ctvr-analyser.cs.tcd.ie

Remote control and IQ acquisition using Matlab

In order to connect to the analyser and arbitrary waveform generator using Matlab, you must
first install the National Instruments VISA runtime engine.

* Download the runtime engine for your operating system and install:

* Windows: : Runtime engine for Windows (34MB .exe)
* Linux/SUSE/RedHat: Runtime engine for Linux/SUSE/RedHat (6MB .iso)
* Mac OS X: Runtime engine for Mac OS X (6MB .dmg)

Use of licensed bands

http://nodeuser:ctvrnodepass@ctvr-switch.cs.tcd.ie/cmd.html
http://nodeuser:ctvrnodepass@ctvr-switch.cs.tcd.ie/cmd.html
http://joule.ni.com/nidu/cds/view/p/id/1071/lang/en
http://joule.ni.com/nidu/cds/view/p/id/2044/lang/en
http://joule.ni.com/nidu/cds/view/p/id/2043/lang/en

CREW - FP7 - GA No. 258301 D3.1

 88

For use of wireless spectrum outside of unlicensed bands the experimenter is directed here.

Attachment Size
Iris_Testbed_Lab_Diagram.jpg 150 KB
ctvr_testbed_google_calendar.jpg 101.79 KB

First example experiment
The full installation instructions for iris can be found at:
https://ntrg020.cs.tcd.ie/irisv2/

The wiki contains information on how to install iris on both Windows and Linux OS.

As well as information on how to run a radio and on the test bed in general.

In this sample experiment we will run a simple radio and then adapt a component and add a
controller, with a view to exploring the basic functionality of both. The steps a researcher
should follow to complete the experiment are outlined below.
1. Follow the instructions outlined in the wiki to run radio, OFDMFileReadWrite.XML

2. If this radio is functioning correctly, “radio running” will appear on the command line.

3. To add a controller to the radio, we must first create an event in one of the components to
which the controller can subscribe. To do this, open the shaped OFDM modulator and register
an event in the constructor function.

4. Once the event is registered we must create a condition that must be satisfied for the event
to be activated. To do this, open the “process” function (as this is where all the calculations
are carried out) and specify a condition that activates the controller whenever, for example,
100 packets have passed through.

5. Once this has been done the controller can be made. Open the “example” controller; this
gives us a template to work with.

6. Within the controller we must do two things, subscribe to the event that has been set up in
the component and specify the parameter that we wish to change as well as the value we wish
to change it to.

7. To change the parameter, we specify the name of the parameter as well as the component
and engine that it is in. These are assigned in the “ProcessEvent” function.

8. The logic that dictates what the parameter is changed to also goes in this function.

http://www.crew-project.eu/portal/iris/test-and-trial-ireland
http://www.crew-project.eu/sites/default/files/Iris_Testbed_Lab_Diagram.jpg
http://www.crew-project.eu/sites/default/files/ctvr_testbed_google_calendar.jpg
https://ntrg020.cs.tcd.ie/irisv2/

CREW - FP7 - GA No. 258301 D3.1

 89

9. Recompile all the relevant code, include the controller in the XML file and run the radio as
before.
If the radio is running properly, you should see the event being triggered on the command line
and the new value of the parameter in question.

Test and Trial Ireland
In order to enable research into innovative new technologies, which would require
transmission and reception testing within licensed bands, Test and Trial Ireland have the
ability to make certain bands in the Irish wireless spectrum available for use. Test and Trial
Ireland is a licensing programme which was launched by the Commission for
Communications Regulation in Ireland (ComReg).

If the experimenter requires use of licensed bands further details on the programme, as well as
information about how to apply for spectrum, are available at http://www.testandtrial.ie/.

LTE advanced documentation

Hardware
Signal processing hardware by Signalion (www.signalion.com)
• Sorbas602 eNodeB Simulator with ZF Interface to a Sorbas Radio Unit ("ZF Interconnect”)
• Sorbas202 Test UE with ZF Interface to a Sorbas Radio Unit ("ZF Interconnect”)
• Sorbas472 Radio Unit by Signalion: EUTRAN band VII(2.6 GHz), 20MHz bandwidth, Tx
power approx. 15dBm (indoor) and approx. 30dBm (outdoor), supports up to two Tx and two
Rx channels

Available hardware
Indoor lab:
• 5 stationary eNBs (on desks)
• 4 stationary UEs (on desks)
• 2 mobile UEs (mounted on studio racks)
• 2 mobile UEs (mounted on carts)

http://www.testandtrial.ie/
http://www.signalion.com/
http://www.testandtrial.ie/

CREW - FP7 - GA No. 258301 D3.1

 90

Outdoor lab:
• 2 eNBs with 1 sector each (mounted on the roof of the building)
• 3 mobile UEs (mounted on rickshaw/bus)
• 6 batteries, can supply an UE for around 2-4 hours

CREW - FP7 - GA No. 258301 D3.1

 91

Measurement equipment
• Rhode&Schwarz FSH4
• Rhode&Schwarz FSQ8

Tools
SimpleProxy 1.3.1
This tool is installed on all eNB control computers and is used to connect to an eNB, load a
configuration and dump IQ data at eNB.

TestUE Config
This tool is installed on all UE control computers and is used to configure an UE.

Test UE Trace
This tool is installed on all UE control computers and is used to monitor UE activity in real-
time

UE_dump_tool
This tool is installed on all UE control computers and is used to record the UE's IQ data
dumps.

Getting started: A basic tutorial
This tutorial explains how to set up a basic transmission.
Download this Zip archive with all necessary default configuration files.

Setup the eNB

• Power the hardware
o Sorbas eNB Simulator
o Radio Unit
o eNB control computer

• Configure the eNB

http://www.crew-project.eu/sites/default/files/CREW_config_default.zip

CREW - FP7 - GA No. 258301 D3.1

 92

o Open the SimpleProxy 1.3.1 tool

o Click Load Settings and select CREW_DL_config_default_1eNB_2UEs.xml or

CREW_UL_config_default_1eNB_2UEs.xml
o Click Reset to reset the eNB
o Wait for eNB broadcast message to appear in the logging box below
o Click Config to send the configuration to the eNB
o Check logging box for errors

Setup the UE

• Power the hardware
o Sorbas Test UE
o Radio Unit
o UE control computer

• Configure the UE
o Open the TestUE Config tool

http://www.crew-project.eu/sites/default/files/SimpleProxy1.png

CREW - FP7 - GA No. 258301 D3.1

 93

o Select the System Config tab

o Click Load settings and select CREW_DL_config_default_UE_id=0 or

CREW_UL_config_default_UE_id=0
o Click DL config and wait for UE response
o Click UL config and wait for UE response

• Trace
o Open the TestUE Trace tool

o Select the Display (4) tab
o Click Enable
o Click Run

http://www.crew-project.eu/sites/default/files/TestUEConfig2.png
http://www.crew-project.eu/sites/default/files/TestUETrace.png

CREW - FP7 - GA No. 258301 D3.1

 94

The system is now running. Check spectrum on R&S FSQ.

Record IQ data dumps

• Dump at the eNB
o Open the SimpleProxy 1.3.1 tool

http://www.crew-project.eu/sites/default/files/fsq.JPG

CREW - FP7 - GA No. 258301 D3.1

 95

o Click Freq && Dump tab

o Click Start Dump

• Dump at the UE
o Browse into the directory of the UE_dump_tool
o Click start.bat

• Process IQ dumps
o Extract IQ samples and AGC values with dumpDemux.m script
o Perform further processing in Matlab

Deviations from LTE Rel. 8
Please note that the TU Dresden testbed supports LTE Rel. 8 functionality for the most parts,
however there are several deviations:

Downlink
The frame structure and control channels slightly different:
• PDCCH is always on the 2. OFDM-symbol (variable position according to Rel. 8)
• PHICH is not in the first OFDM symbol and has a different structure/content
• PCFICH is not supported
• PBCH is not supported

Uplink
The uplink operates with OFDM modulation.

Please contact us at if you want to know if a particular
feature is supported.

http://www.crew-project.eu/sites/default/files/SimpleProxy2.png

CREW - FP7 - GA No. 258301 D3.1

 96

TWIST documentation
Browse the sections below for information about the TWIST testbed.

Introduction and overview of capabilities
TKN Wireless Indoor Sensor network Testbed (TWIST)

The TKN Wireless Indoor Sensor network Testbed (TWIST), developed by the
Telecommunication Networks Group (TKN) at the Technische Universität Berlin, is a
scalable and flexible testbed architecture for experimenting with wireless sensor network
applications in an indoor setting. The TWIST instance deployed at the TKN group includes
204 sensor nodes and spans three floors of the FT building on the TU Berlin campus,
resulting in more than 1500 square meters of instrumented office space. TWIST can be used
locally or remotely via a webinterface.

Mobile components

In addition to TWIST, which is a fixed testbed infrastructure, CREW experiments involving
mobility can be carried out in the TKN premises using additional mobile equipment. The use
of this equipment requires that experimenters are present at the TKN premises. The mobile
components are:

• 1 mobile robot: iRobot Roomba together with a Microsoft Kinect sensor. The robot
runs ROS (an open-source, meta-operating system) and it can be programmed to
follow certain trajectories in the TWIST building. Shimmer2 sensor nodes or WiSpy
devices (see below) can be mounted on the robot, e.g. to record RF environmental
maps, or perform experiments emulating body area networks (BANs) as well as
experiments involving interaction between a mobile network and the fixed TWIST
infrastructure.

• 8 Shimmer2 nodes, which are wearable sensor nodes similar to the popular TelsoB
platform and can be attached to a person (or robot).

• 5 WiSpy 2.4x USB Spectrum Analyzers, which are low-cost devices to scan RF noise
in the 2.4 GHz ISM band.

Getting started: tutorials
Below you find information on how to get started using the TWIST testbed. Most steps
involve remote access via the TWIST web interface, but there is also a more advanced tutorial
on how to control TWIST via the cURL command line tool.

Requesting a user account
To access the TKN instance of the TWIST web interface you need to have registered an
account. If you are not yet registered, go to the TWIST web interface where you should see
the following welcome page:

http://www.tkn.tu-berlin.de/
http://www.tu-berlin.de/
http://www.tkn.tu-berlin.de/
http://www.tu-berlin.de/
http://www.irobot.com/
http://www.shimmer-research.com/
http://www.metageek.net/products/wi-spy/
https://www.twist.tu-berlin.de:8000/
https://www.twist.tu-berlin.de:8000/

CREW - FP7 - GA No. 258301 D3.1

 97

Make sure that your browser has cookies enabled and click on "New account". In the form fill
in your name, email address and choose a username (at least 6 characters) and a password.
Make sure you confirm the password and answer the spam control question. Then press the
"Request" button; if you filled in the form correctly you will see a new page saying
"Successful account request".

Now go to the TWIST terms of use page. Copy and paste the content of this page into an
email, add the requested information (the nature of the intended experiments, etc.) and send
this email to the TWIST administrator (email address is given on the same webpage). Please
also make sure that you explain your relationship to the CREW project.

The last step in obtaining an account is in the responsibility of the administrator, and you will
be notified by email when your account has been activated. If there are any problems, please
contact Jan Hauer.

Attachment Size
TWIST_login_screen.png 96.54 KB

Running a simple experiment
Installing a node image

In this section we install the TinyOS 2 Oscilloscope application on a set of Tmote Sky nodes
in the TKN TWIST testbed. The Oscilloscope application is described in the TinyOS 2
tutorial 5. After you have compiled the application with make telosb open a web browser
and access the TWIST web interface. Press the "Login" button, enter your username and
password and then click on "Sign in". If you have not yet registered a TWIST user account
take a look at this tutorial page.

You will see a welcome page where you have three options: manage and update your account
settings ("My Info"), schedule and control jobs in the testbed ("Jobs") or logout ("Logout").

http://www.twist.tu-berlin.de/wiki/TWIST/Instances/TKN/TermsOfUse
http://www.tkn.tu-berlin.de/~hauer/
http://www.crew-project.eu/sites/default/files/TWIST_login_screen_0.png
http://tinyos.net/
http://docs.tinyos.net/tinywiki/index.php/Sensing
http://docs.tinyos.net/tinywiki/index.php/Sensing
https://www.twist.tu-berlin.de:8000/
http://www.crew-project.eu/content/requesting-user-account

CREW - FP7 - GA No. 258301 D3.1

 98

Click on "Jobs" and you will see a list of scheduled jobs, i.e. the currently active jobs as well
as pending future jobs. Take a close look at the list and find a time period for which
Tmote/TelosB nodes are not reserved by someone else. Then click on "Add" and you will see
the Job Management page as follows:

Under "Platforms" select Tmote; then choose a "Start/End date" and "Start/End time" such
that the time interval is not overlapping with other jobs, which you checked in the previous
step. You cannot make a real mistake here, because the system will automatically check for
and not permit jobs that are overlapping in time if they use the same mote platform. However,
different platforms (eyesIFX vs. Tmote) may be used concurrently. In the field "Description"
enter a short note on what you plan to do in your job, such as "Testing the T2 Oscilloscope
application", then click on "Add". If the time interval that you entered was accepted you will
be taken back to the list of scheduled jobs, otherwise you get an error message and need to
adapt the values.

The list of "Scheduled jobs" should now include your job. Your entry is likely to have gray
background colour, meaning that it is registered but not yet active. The current system time is
always shown in the upper right corner of the page and once your job becomes active -- its
start time is shown in the column "Start" -- the background colour of your entry will turn
yellow (you need to click the reload button of your browser).

CREW - FP7 - GA No. 258301 D3.1

 99

When your job is active apply a tick mark at the left side of the entry and press the "Control"
button at the bottom (the "Edit" button would be used to change the time of your job and with
the "Delete" button you can remove your job).

Hint: When your job is active (during a experiment) you can still extend its "End time" by
clicking on "Edit" on the "Jobs" page, provided that the new "End time" does not overlap with
other registered jobs.

After you have clicked the "Control" button you will see the page for controlling your active
job as shown in this figure:

This page is divided into the list of Tmote node IDs available in the testbed ("Available
reserved resources"), a section for submitting up to three different program images to be
programmed on a subset of the nodes ("Job configuration") and a set of buttons (on the
bottom, not shown in Figure 3) to perform some actions, such as installing the image(s) on the
nodes.

For the TinyOS 2 Oscilloscope application we want to install the Oscilloscope program image
on some Tmote nodes, and one node will need to act as gateway and will be programmed with
the TinyOS 2 BaseStation application (see TinyOS 2 tutorial 5). Because we will install two
different application images, in the "Job configuration" field we will use two of the three
"Control group" sections: the "Control group 1" section for the Oscilloscope application and
the "Control group 2" section for the BaseStation application.

http://docs.tinyos.net/tinywiki/index.php/Sensing

CREW - FP7 - GA No. 258301 D3.1

 10

In the "Control group 1" section, enter in the "Node list" field a whitespace-separated list of
the node IDs on which the the Oscilloscope is to be programmed, let's say 10 11 12. For
convenience you can copy & paste from the list of IDs shown on top in the "Available
reserved resources" list.

Then click on the "browse..." button next to the "Image" field just below the "Node list" field.
Select the Oscilloscope image, which is the main.exe in your local tinyos-
2.x/apps/Oscilloscope/build/telosb (you must have compiled the Oscillocope
application with "make telosb" before). The "SF Baudrate" and "SF Version" fields control
whether a SerialForwarder will be started for all nodes in the respective "Node list". Since we
only need a SerialForwarder for the BaseStation application, we don't change the values
(leaving it "None", "TinyOS 2.x"). Finally, "Channel" is the IEEE 802.15.4 channel to be
used by the Tmote Sky radio CC2420 (if you change the channel for the Oscilloscope
application, make sure that you do the same for the BaseStation application). In fact, the value
of the CC2420_DEF_CHANNEL symbol inside your progam image will be replaced by the value
of the "channel" field and thus, if your application includes the TinyOS 2 CC2420 radio stack,
you can still modify the default radio channel after you have compiled the image.

Hint: The node ID is another symbol that is modified for each node individually before
programming the image. It is accessible via TOS_NODE_ID in a TinyOS application.

We use the "Control group 2" section for installing the BaseStation program image on another
node. In the "Node list" field enter 13 (or whichever node ID you want to use for the
BaseStation application) and under "Image" click "browse..." and select the main.exe from
your local tinyos-2.x/apps/BaseStation/build/telosb folder (you must have compiled
the BaseStation application with "make telosb" before). Because we want to later establish a
serial connection to the BaseStation node, select the pull-down menu under the "SF Baudrate"
field and choose a serial baudrate. Whenever this field has a value other than None a
SerialForwarder will be started for all nodes in the respective "Node list". The default baud
rate for the "TelosA", ",TelosB" and "Tmote" platforms is 115200 baud.

Hint: You can change the baud rate for a telos node by modifying tinyos-
2.x/tos/platforms/telosa/TelosSerialP.nc (this file is included by telosa, telosb and tmote
platform). Make sure you recompile your application after changing the file.

The "SF Version" field defines the version of the Serial Forwarder protocol. Because we are
using a TinyOS 2 applications select "2" (for a TinyOS 1 application you would select "1"). If
the "SF Baudrate" field is None then the "SF Version" is ignored. Finally, make sure you
select the same "Channel" as the one for the Oscilloscope application. Your configuration
should now look like the one shown the next figure:

CREW - FP7 - GA No. 258301 D3.1

 10

To actually program the images on the nodes scroll down, press the "Install" button and wait.
After not much longer than 1 minute you should see a page with the "Execution log". Check
for possible errors (any line "Could not find symbol [...] ignoring symbol" is only telling you
that the respective symbol was not found/changed in the application image) and scroll down
to the bottom where you can find a summary of the "Install" operation. Here you can also see
that a SerialForwarder has been started for node 13:

To forward SF e.g. for node 13 use: ssh -nNxTL 9013:localhost:9013
twistextern@www.twist.tu-berlin.de

In the next section we will establish an ssh tunnel to the TWIST server and connect to the
SerialForwarder of the BaseStation node. The remainder of this section summarizes the fields
and options for controlling an active job over the web interface.

The following table describes the fields in the "Job configuration" section:

Field Meaning
Node list Whitespace separated list of node IDs on which the image will be programmed
Image The image to be programmed on the nodes in the "Node list"

SF Baudrate Whether a SerialForwarder is started for each of the nodes in "Node list"
and what baudrate it will use

SF version The version of the SerialForwarder: use 1 for TinyOS 1.x and 2 for TinyOS 2.x

CREW - FP7 - GA No. 258301 D3.1

 10

Field Meaning
Channel The CC2420 radio channel

The following table describes the buttons on the bottom of the "Controlling active job" page:

Button Meaning

Install Installs the image(s) on the node(s) specified in the above "Job Configuration"
section; SerialForwarders will be started (if selected) and nodes are powered on

Erase Programs the TinyOS Null application on the selected set of nodes
Reset Resets (powers off & on) the selected set of nodes
Power On Cuts the USB power supply for the selected nodes
Power Off Enables the USB power supply for the selected nodes
Start SF Starts a SerialForwarder for the selected nodes
Stop SF Stops the SerialForwarder for the selected nodes
Start Tracing Stores the serial data output from the nodes in a trace file
Stop Tracing Stops storing data in a trace file

By pressing the "Start Tracing" button the serial data output from all nodes are automatically
stored to a trace file. This file can be accessed via the job control page by pressing the
"Traces" button (with your job checked). If you want to use automatic tracing then it is
recommended that during install you select the correct "SF Baudrate" and "SF Version". After
the install process, you can then simply click on "Start Tracing" without having to manually
start the serial forwards.

Exchanging Data via the Serial Connection

Through the previously described "Install" operation a SerialForwarder for the BaseStation
node was started. In order for your tinyos-

2.x/apps/Oscilloscope/java/Oscilloscope.java client to connect to this
SerialForwarder, you first need to establish an SSH Tunnel to forward the port of the
SerialForwarder to your machine. At the very end of the execution log you find the syntax for
this SSH command (type it into a shell):

ssh -nNxTL 9013:localhost:9013 twistextern@www.twist.tu-berlin.de

Once you have forwarded the port you can access the remote SerialForwarder like a local one.
However, when you start your client application make sure that it attaches to the correct port
as specified in the SSH Tunnel (the above command forwards the remote port to your local
port 9013). For example, to start the JAVA Oscilloscope client you would first need to set the
MOTECOM environment variable as follows:

export MOTECOM=sf@localhost:9013

Now you can start the Oscilloscope GUI by typing:

CREW - FP7 - GA No. 258301 D3.1

 10

.\run

in the tinyos-2.x/apps/Oscilloscope/java directory as described in TinyOS 2 tutorial 5.

You should now see an Oscilloscope GUI like the one described in the TinyOS tutorial.

Attachment Size
TWIST_job_management.png 104.83 KB
TWIST_active_job_control.png 89.52 KB
TWIST_example_job_control.png 61.46 KB

Using cURL for automated control
cURL is a command line tool that can, among other things, transfer files and POST web
forms via HTTPS. It can thus be used to automate sequences of operations on the testbed,
such as installing an image or powering a node off. Before you can actually control your job
you need to authenticate via cURL (Step 1) and find you job ID (Step 2). Afterwards you can
control your job (Step 3) and download traces (Step 4) associated with your job ID. The
following steps list the relevant cURL commands.

Step 1: Authenticate
Use the following format to authenticate and store the secure cookie for the future requests
(replace YOUR_USER_NAME and YOUR_PASSWORD with your username and password,
respectively):

curl -L -k --cookie /tmp/cookies.txt --cookie-jar /tmp/cookies.txt -d
'username=YOUR_USER_NAME' -d 'password=YOUR_PASSWORD' -d 'commit=Sign in'
https://www.twist.tu-berlin.de:8000/__login__

Note that all data fields have to be URL encoded either implicitly using --data-urlencode or
explicitly (in case you have special characters in username/password)

Step 2: Find the job_id
You need to know the job_id before you can use curl to control it. This can also be done by
fetching and parsing the jobs page with cURL, maybe passing the output through "tidy"

curl -L -k --cookie /tmp/cookies.txt --cookie-jar /tmp/cookies.txt
https://www.twist.tu-berlin.de:8000/jobs | tidy

Step 3: Control
The following is a list of examples on how to control a job. Make sure that you replace the
job_id and node IDs.

• Erase - For job_id 346, erase nodes 12 and 13:

http://docs.tinyos.net/tinywiki/index.php/Sensing
http://www.crew-project.eu/sites/default/files/TWIST_job_management.png
http://www.crew-project.eu/sites/default/files/TWIST_active_job_control.png
http://www.crew-project.eu/sites/default/files/TWIST_example_job_control.png
http://curl.haxx.se/
https://www.twist.tu-berlin.de:8000/jobs

CREW - FP7 - GA No. 258301 D3.1

 10

curl -k --cookie /tmp/cookies.txt --cookie-jar /tmp/cookies.txt -F
__nevow_form__=controlJob -F job_id=346 -F ctrl.grp1.nodes="12 13" -F
erase=Erase https://www.twist.tu-berlin.de:8000/jobs/control

• Install - For job_id 346, install TestSerialBandwidth on nodes 12 and 13 and start
serial forwarders:

curl -k --cookie /tmp/cookies.txt --cookie-jar /tmp/cookies.txt -F
__nevow_form__=controlJob -F job_id=346 -F ctrl.grp1.nodes="12 13" -F
ctrl.grp1.image=@/home/hanjo/tos/tinyos-
2.x/apps/tests/TestSerialBandwidth/build/telosb/main.exe -F
ctrl.grp1.sfversion=2 -F ctrl.grp1.sfspeed=115200 -F install=Install
https://www.twist.tu-berlin.de:8000/jobs/control

• Power Off - For job_id 346, power off nodes 12 and 13:

curl -k --cookie /tmp/cookies.txt --cookie-jar /tmp/cookies.txt -F
__nevow_form__=controlJob -F job_id=346 -F ctrl.grp1.nodes="12 13" -F
'power_off=Power Off' https://www.twist.tu-
berlin.de:8000/jobs/control

• Power On - For job_id 346, power on nodes 12 and 13:

curl -k --cookie /tmp/cookies.txt --cookie-jar /tmp/cookies.txt -F
__nevow_form__=controlJob -F job_id=346 -F ctrl.grp1.nodes="12 13" -F
'power_on=Power On' https://www.twist.tu-berlin.de:8000/jobs/control

• Start Tracing - For job_id 346, start tracing on nodes 12 and 13:

curl -k --cookie /tmp/cookies.txt --cookie-jar /tmp/cookies.txt -F
__nevow_form__=controlJob -F job_id=346 -F ctrl.grp1.nodes="12 13" -F
'start_tracing=Start Tracing' https://www.twist.tu-
berlin.de:8000/jobs/control

• Stop Tracing - For job_id 346, stop tracing on nodes 12 and 13:

curl -k --cookie /tmp/cookies.txt --cookie-jar /tmp/cookies.txt -F
__nevow_form__=controlJob -F job_id=346 -F ctrl.grp1.nodes="12 13" -F
'stop_tracing=Stop Tracing' https://www.twist.tu-
berlin.de:8000/jobs/control

Step 4: Collect data
To collect the specific trace file from archived job 336

curl -g -k --cookie /tmp/cookies.txt --cookie-jar /tmp/cookies.txt -d
'job_id=339' -d 'trace_name=trace_20080507_114824.0.txt.gz' -o
trace_20080507_114824.0.txt.gz https://www.twist.tu-
berlin.de:8000/jobs/archive/traces/download

Hardware and testbed lay-out

CREW - FP7 - GA No. 258301 D3.1

 10

The TKN Wireless Indoor Sensor network Testbed (TWIST), developed by the
Telecommunication Networks Group (TKN) at the Technische Universität Berlin, is a
scalable and flexible testbed architecture for experimenting with wireless sensor network
applications in an indoor setting. It provides basic services like node configuration, network-
wide programming, out-of-band extraction of debug data and gathering of application data, as
well as several novel features:

• experiments with heterogeneous node platforms
• support for flat and hierarchical setups
• active power supply control of the nodes

The self-configuration capability, the use of hardware with standardized interfaces and open-
source software makes the TWIST architecture scalable, affordable, and easily replicable. The
TWIST architecture was published in this paper.

The TWIST instance deployed at the TKN group is one of the largest academic testbeds for
indoor deployment scenarios. It spans the three floors of the FT building at the TU Berlin
campus, resulting in more than 1500 square meters of instrumented office space. Currently
the setup is populated with two sensor node platforms:

• 102 TmoteSky nodes, which are specified in detail here.
• 102 eyesIFXv2 nodes; this platform is an outcome of the EU IST EYES project. The

platform is based on an MSP430 MCU and the TDA5250 transceiver, which operates
in the 868 MHz ISM band using ASK/FSK modulation with data-rates up to 64 Kbps.
A summary of the platform's hardware components is given, for example, in this
paper.

In the small rooms, two nodes of each platform are deployed, while the larger ones have four
nodes. The setup results in a fairly regular grid deployment pattern with intra node distance of
3m. The following shows the node placement on the 4th floor of the building (floors 3 and 2
have a very similar layout):

http://www.tkn.tu-berlin.de/
http://www.tu-berlin.de/
http://www.tkn.tu-berlin.de/publications/papers/real04f-handziski.pdf
http://www.tkn.tu-berlin.de/
http://www.tu-berlin.de/
http://www.crew-project.eu/portal/wilab/sensornode-tmote-sky
http://cordis.europa.eu/fetch?CALLER=PROJ_ICT&ACTION=D&CAT=PROJ&RCN=61532
http://doc.utwente.nl/55788/1/01547717.pdf

CREW - FP7 - GA No. 258301 D3.1

 10

The testbed architecture can be divided into three tiers. The sensor nodes form the lowest tier,
they are attached to the ceiling as visualized in the following figure, which shows a Tmote
Sky and an eyesIFXv2 node in one of the office rooms:

Sensor nodes are connected via USB cabling and USB hubs to the testbed infrastructure. If
TWIST only relied on the USB infrastructure, it would have been limited to 127 USB devices
(both hubs and sensor nodes) with a maximum distance of 30 m between the control station
and the sensor nodes (achieved by daisy-chaining of up to 5 USB hubs). Therefore the
TWIST architecture includes a second tier: so-called "super nodes" which are able to interface
with the previously described USB infrastructure. We are using the Linksys Network Storage
Link for USB2.0 (NSLU2) device as super nodes as depicted in the following picture:

The third and last tier of the architecture is the server and the control stations which interact
with the super nodes using the testbed backbone. The server, among other things, implements

CREW - FP7 - GA No. 258301 D3.1

 10

a PostgreSQL database that stores a number of tables including configuration data like the
registered nodes. It also provides remote access via a webinterface. The following figure
provides a general overview of the TWIST hardware architecture:

The hardware instantiation of the TWIST hardware architecture at the TKN group is shown in
this figure:

CREW - FP7 - GA No. 258301 D3.1

 10

Attachment Size
TWIST_components.png 115.05 KB
TWIST_architecture.png 70.2 KB
TWIST_slug.png 1.04 MB
TWIST_telos.png 1.01 MB
TWIST_floorplan.png 25.42 KB
TWIST_tmote_and_eyesIFXv2.png 66.14 KB

System health monitoring
The system health of the TKN TWIST instance is constantly monitored using the CACTI
monitoring tools:

You can either use the CACTI System Health Summary, which displays information on the
utilization of the testbed server and super node status. The information is updated every 30
min.

Or you can access the CACTI System Health Browser to see more fine-grained information
on some particular systems components (please use account name "guest" and password
"guest" to get access to the public data.)

w-iLab.t documentation
The sections contain an overview of all information needed to get you started using the w-
iLab.t. If you are new to the testbed, the tutorials are a good place to start.

http://www.crew-project.eu/sites/default/files/TWIST_components_0.png
http://www.crew-project.eu/sites/default/files/TWIST_architecture_0.png
http://www.crew-project.eu/sites/default/files/TWIST_slug_0.png
http://www.crew-project.eu/sites/default/files/TWIST_telos_0.png
http://www.crew-project.eu/sites/default/files/TWIST_floorplan_0.png
http://www.crew-project.eu/sites/default/files/TWIST_tmote_and_eyesIFXv2.png
http://www.twist.tu-berlin.de/cacti
https://www.twist.tu-berlin.de/cacti

CREW - FP7 - GA No. 258301 D3.1

 10

Introduction to w-iLab.t: overview of
capabilities
The w-iLab.t (short name: wilab) is an experimental, generic, heterogeneous wireless
testbed deployed in the IBBT building and at a second, remote location. w-iLab.t provides a
permanent testbed for development and testing of wireless applications via an intuitive web-
based interface. w-iLab.t hosts different types of wireless nodes: sensor nodes, Wi-Fi based
nodes, sensing platforms, and cognitive radio platforms (that are limited to operating in
the ISM bands due to license restrictions.) The wireless nodes are also connected over a wired
interface for management purposes. Each of the devices can be fully configured by the
experimenters. As the Ethernet interfaces that are put in place for management reasons can
also be used during experiments as a wired interface, heterogeneous wireless/wired
experiments are possible. As such, a very large number of (wireless) network experiments
may be executed. Please click on the thumbnail below to get an overview picture of the

hardware available in w-iLab.t. After clicking the thumbnail, click to zoom in.

The two locations that are currently available in the w-iLab.t are:

1. The original "Office" deployment; Nodes (both sensor nodes and embedded PCs with
Wi-Fi interfaces) are installed at 200 spots over three floors of an office environment.

2. A new deployment located in Zwijnaarde, nearby Gent, Belgium. All nodes at this
location are more powerful in terms of processing power, memory and storage. Nodes
are located at 60 spots throughout a utility room.

A short introduction to different possible experiments is presented below.

http://www.crew-project.eu/sites/default/files/wilab-HardwareOverview.png

CREW - FP7 - GA No. 258301 D3.1

 11

Sensor node experiments
Registered users can create their own executables, upload these executables, associate those
executables with a selection of sensor nodes (this process is called "creating a job"), and
schedule the job to be run on wilab. During the job, measurements and management data is
logged to a database. This info is presented to the user upon job completion and may then be
used for processing and visualization. In addition, real-time visualization tools are provided
which make it possible to follow the state of the testbed and the experiment, while a job is
still running. As such, w-iLab.t facilitates research in sensor network programming
environments, communication protocols, system design, and applications.

Wi-Fi experiments + embedded PC's
Experimenters can also fully control the embedded PC's that are available. The embedded
PCs run a Linux distribution and are equipped with two Atheros based Wi-Fi interfaces.
These Wi-Fi interfaces may or may not be used during experiments. It is up to the user to
define the behavior of the embedded PCs by installing software and/or scripts on the nodes.
As such, the embedded PCs can be used for a very broad set of experiments. Just to give a
few examples, it is possible to:

• enable a single wireless interface; configure it as an access point -> use of the
embedded PC as an access point

• enable two wireless interfaces in ad-hoc mode -> use of the embedded PC als a two-
interfaced Wi-Fi ad-hoc node

• install any type of software on the node: e.g. a webserver, a spectrum database, an
aggregator node, ...

An experimenter can access the embedded PCs individually via SSH, or distribute
software/drivers/kernels/scripts/... to multiple nodes at once, by using the web-based testbed
interface. During the experiments, a directory on a w-iLab.t storage server is mounted
automatically for logging purposes. Alternatively, experimenters may log information to their
own storage servers, or store information to a database.

The default image of the embedded PCs in the office environment comes with the Madwifi
wireless driver preinstalled. Experimenters may install their own drivers and protocols to the
embedded PCs. As a general rule: everything you are able to do with an embedded PC with
Atheros Wi-Fi cards on your own desktop, can also be implemented on a large scale in the
testbed.

At the Zwijnaarde location, USB Bluetooth interfaces are also plugged in to the embedded
PCs. Please check the hardware overview picture above to know what is connected to the
embedded PCs at which location.

Cognitive networking platforms

CREW - FP7 - GA No. 258301 D3.1

 11

At the Zwijnaarde location, a set of cognitive networking platforms are available. They can be
remotely accessed over the internet. For information on which cognitive devices are
available, please check the hardware overview image on top of this page. Again, it is up to
the experimenters to decide how to use the hardware that is made available. Signals may only
be transmitted in the 2.4 GHz and 5 GHz ISM band due to license restrictions.

Getting started: tutorials
To get familiar with the look and feel of the w-iLab.t testbed, we recommend going through
the basic tutorial, in which you will run your first, pre-configured sensor network experiment.

If you want to get familiar with the more advanced functionality of the testbed, you can walk
through the advanced tutorials.

Basic tutorial: your first experiment on w-
iLab.t
Run your first experiment on w.iLab-t
In this basic tutorial you will learn how to run your first sensor experiment on Wilab.t. The
sensor code we will use for this experiment is called RadioPerf. This application is able to
send commands over the USB channel to the mote (e.g. start sending radio packets of x bytes
to destination y). The mote also periodically sends reports back over the USB channel (e.g.
how many packets it received, what the RSSI of the received packets was, ...).

In this tutorial you will learn how to tell a sensor node to start sending packets and afterwards
analyze the the result with one of the Wilab.t tools.

1. Request OpenVPN account

Send an e-mail to vwall-ops@atlantis.ugent.be to request an OpenVPN account for the
w.iLab-t testbed. Be sure to also mention your affiliation and/or project for which you
want access to the testbed.
We recommend downloading the VPN software from the OpenVPN website.

Once you installed the software and received the necessary certificates and credentials,
you should be able to connect to the w.iLab-t testbed.

Make sure you run the OpenVPN software as Administrator/root !

2. Request w.iLab-t account

Now that you're able to connect to the w.iLab-t web interface, you can request an
account on the testbed by completing the form on the signup page.

3. Create your first job

mailto:vwall-ops@atlantis.ugent.be
http://www.openvpn.net/index.php/open-source/downloads.html
http://www.wilab.atlantis.ugent.be/
http://www.wilab.atlantis.ugent.be/user-signup.php

CREW - FP7 - GA No. 258301 D3.1

 11

Once your account has been approved, you can log in to the w.iLab-t testbed.

Now go to the job page to create your first job.
Click the Create new job button and fill in a name and description. Click next or go
to the files tab.

In the files tab you must select at least one Program file and one Class File. The
Program File contains the firmware that will be programmed on the sensor nodes.
Sensor nodes can send messages to the w.iLab-t server which will be logged in the
database. The Class Files define which messages, that are sent by the sensor node,
will be logged in the database.

For our first job, we will use the RadioPerf-CREW image as Program File and the
RadioPerf-ReportMsg as Class File. Select them in the list on the left and click the
Add>> button.

At the bottom of the files tab, it is possible to upload your own images and class files.

Click Next or go to the motes tab.

You can choose to run the firmware on all available sensor nodes, or pick some
specific nodes out of the list. For our first experiment, we can just run the experiment
on all available sensor nodes.

http://www.wilab.atlantis.ugent.be/index.php
http://www.wilab.atlantis.ugent.be/jobs-edit.php

CREW - FP7 - GA No. 258301 D3.1

 11

The scenario and platform tabs are not important for our first experiment, so just click
the Submit button at the bottom of the page.

4. Schedule your first job

Now that we created our first job, we can schedule it to be executed on the testbed.
On the schedule page select the job you want to execute and select a zone (part of the
testbed) in which you want it to run. (Choose between 1A/1B/2A/2B/3A/3B).

Now double click the first time slot where you want the experiment to start and select
some consecutive blocks to determine the duration of the experiment. For this first
experiment, 10 minutes should suffice. Click Schedule Job to confirm the selection.

5. Analyze results

To analyze the results of your experiment (during or after), you can log in to your
personal database via the user info page. You should take note of your wilab Database
Name which is listing near the top of the page (this is NOT your email-adres).

After clicking the phpmyadmin link, you can fill in your username and password.
On the left side of the phpmyadmin page you see some general databases and one
database which is named after your own user name. Click this database to see what
tables it contains.
For every job, there should be a table in the database (if it logged any info). Click the
browse icon to see all the info your experiment has logged.

6. Visualize experiment

The toolbox page contains a list of analyzer and visualizer XML files. Select the [w-
iLab_t]_Visual_RadioPerf XML file and click Start Visual to start the Java applet

http://www.wilab.atlantis.ugent.be/view-schedule.php
http://www.wilab.atlantis.ugent.be/user-info.php
http://www.wilab.atlantis.ugent.be/phpmyadmin/
http://www.wilab.atlantis.ugent.be/toolbox.php

CREW - FP7 - GA No. 258301 D3.1

 11

that will visualize your experiment. Now fill in your database user name (not email)
and password.

You will need to install the sun-java6-plugin to get the applet working. The applet will
NOT load with the alternative OpenJDK plugin (IcedTea).
The applet has been tested in both Firefox and Internet Explorer.

Once the applet has finished loading, you should now see a blue circle with the sensor
node id for every active node in your experiment.
After some time, every node should log some info to the database and the circles
should change color and now also show the estimated noise floor (ENF).

In the next step we will show how we can modify the experiment by changing some
parameters.

7. Schedule parametrized experiment

In this step we want to schedule the same job, but change some parameters so that one
node will broadcast (single hop) some data packets to all nodes in its neighborhood.
Therefore we go back to the schedule page , select the job we want to run and then
click the parameters button.
Now look for all parameters starting with RadioPerfP. The default values can be used
except for the source parameter. If we want one node to transmit packets to all other
nodes (destination value 65535 equals broadcast), we must change this to the id of the
transmitting node (e.g. 80 if we run the experiment on zone 2A).

Now choose some time slots, select a zone and click the Schedule Job button.

Repeat Step 6 to visualize the parametrized experiment.
You should now see arrows from the sending node to all receiving nodes, with an
RSSI indication next to the arrows.

http://www.wilab.atlantis.ugent.be/view-schedule.php

CREW - FP7 - GA No. 258301 D3.1

 11

Advanced tutorial: combined wifi and
sensor experiment
Advanced w.iLab-t experiment tutorial
In this tutorial we will use the more advanced features of the w.iLab-t testbed by
benchmarking a channel switching protocol for wireless sensor networks (WSN) in a wireless
environment we create by using linux scripts.

We will use 4 embedded PCs to generate the wireless interference for the wireless sensor
network, together with a full zone of sensor nodes that use a simple reporting method to send
periodical data to a sensor node sink.

The example topology used for this experiment is shown below, with the 4 embedded PCs
being node 46,52,53 and 54. The server is the 802.11g access point, with the other 3
embedded PCs fulfilling the role of stations. All green nodes are the sensor nodes, reporting
to node 48.

CREW - FP7 - GA No. 258301 D3.1

 11

During this tutorial, we will upload scripts to W-iLab.t to manage the behavior of the PCs,
and install a TinyOS image to control the WSN nodes. The goal of this tutorial is to
familiarize yourself with the extended features of wilab, including WSN benchmarking,
controlling the embedded PCs and visualizing experiment data on the w.iLab-t website.

1. Basic Tutorial

Please go through the basic tutorial before continuing with this advanced tutorial.

2. Create the sensor job

An experiment on Wilab.t can be run on both the sensor nodes and the embedded
(Alix) PCs. The sensor part of the experiment is mandatory in the current version of
Wilab.t. If you just want to perform an experiment on the embedded PCs, it is allowed
to use dummy sensor code. For this tutorial however, we will make full use of the
sensor and embedded PC capabilities. This part describes how you can upload your
own sensor binaries and create your sensor job.

Go to the job page to create your sensor job.
Click the Create new job button and fill in a name and description. Click next or go
to the files tab.

In the files tab you must select at least one Program file and one Class File. The
Program File contains the firmware that will be programmed on the sensor nodes.
Sensor nodes can send messages to the w.iLab-t server which will be logged in the
database. The Class Files define which messages, that are sent by the sensor node,
will be logged in the database.

For this tutorial, we will upload our own sensor binaries and message classes. You can
find all the necessary files here. After downloading these files, please scroll down to
the bottom of the files tab and click Browse.... Now select the file you want to upload,

http://www.crew-project.eu/portal/wilabt/getting-started
http://www.wilab.atlantis.ugent.be/jobs-edit.php
http://www.crew-project.eu/sites/default/files/sensor_code_0.zip

CREW - FP7 - GA No. 258301 D3.1

 11

provide a reference name (will be used to show the file in the list) and add a
description (optional). Click the Upload button to start uploading. Repeat this step for
every file you want to upload.

Now select the binary and message classes you just uploaded in the list on the left and
click the Add>> button. Please note the ID (e.g. 6791) displayed to the right of the
message class you just added, you will need this later.

Click Next or go to the motes tab.

You can choose to run the firmware on all available sensor nodes, or pick some
specific nodes out of the list. The right plane shows the nodes excluded from the job
whilst the left plane shows participating nodes. For this experiment, we can just run
the experiment on all available sensor nodes.

The scenario tab will not be used in this tutorial. For more info on this feature, please
read the howto.
We will get back to the platform tab at the end of the next section.

Just click the Submit button at the bottom of the page if you are done setting up your
sensor job.

http://www.crew-project.eu/using-environment-emulator-events

CREW - FP7 - GA No. 258301 D3.1

 11

3. Define an iPlatform

The previous section described how you can run experiments on the sensor nodes.
This part will go into detail on how to run linux scripts and/or binaries on the
embedded PC's on Wilab.t.

Go to the iPlatform page and click New Platform. On the description tab you can
insert a name and a description(optional). Be sure NOT to insert any whitespace in the
name field. Now click Next or go to the mounts tab.

Every Wilab.t user has his own user directory on the Wilab.t fileserver (Wilabfs).
Please log in to wilabfs using your Wilab.t database name (see the user info page if
you cannot remember it). An example command for the fictional "crewuser" account :
ssh crewuser@wilabfs.atlantis.ugent.be

Step into the iPlatform directory and create a new folder for your new iPlatform (you
might want to choose the same name you inserted on the web page).
You can find the files to create your iPlatform here. Please copy all the files to your
newly created directory and make the scripts executable using the chmod +x
scriptname command.

Have a look at the start_mount_code file. This script will be executed automatically
when your iPlatform is started. So everything you want to execute in your experiment
should be called from this script. You can ofcourse create your own script and call it
from the start_mount_code script as it is done in this tutorial. Please change the user
credentials in the "variables" script so that it reflects your settings. Feel free to look at
how the scripts interact with the database and log directories, but a complete
decomposition is out of scope for this tutorial.

We can now go back to the web interface and select the nfs-mount to upload to
Wilab.t. If you named your iPlatform e.g. "tutorial", your nfs-mount will probably
look like this : wilabfs.atlantis.ugent.be:/home/crewuser@crew-
project.eu/iPlatform/tutorial. The directory you define here MUST contain the
start_mount_code script! Otherwise your iPlatform will not be executed.

http://www.wilab.atlantis.ugent.be/platforms-edit.php
http://www.wilab.atlantis.ugent.be/user-info.php
http://www.crew-project.eu/sites/default/files/iplatform_scripts_0.zip

CREW - FP7 - GA No. 258301 D3.1

 11

Just provide a reference name and a description(optional) and click Upload.
The iPlatform can also contain a kernel. If you select this option, the kernel will be
uploaded to the embedded PC's and will be executed when your iPlatform is started.
We will not use this feature in this tutorial.

After uploading the nfs-mount, you can select it from the list on top of the mounts tab
and click Add>>.

Proceed to the nodes tab to select the nodes on which you want to execute the
iPlatform. This is the same as for the sensor nodes. Please note that in the current
version of Wilab.t the sensor node must be included in the experiment in order to be
able to run an iPlatform on the embedded PC connected to the sensor node.

Click Submit to save your iPlatform.

The last step in creating your job is to link your iPlatform to the sensor job. So go
back to the job page, select the job you created in the previous section and click Edit
Job.
Proceed to the platform tab and select your iPlatform from the dropdown list.

Don't forget to press the Submit button to save your job.

4. Scheduling your experiment

Now that we created our first job, we can schedule it to be executed on the testbed.
On the schedule page select the job you want to execute and select a zone (part of the
testbed) in which you want it to run. You should choose between
1A/1B/2A/2B/3A/3B, but the default configuration has been done for 3B. If you wish
to run the experiment on a different level, you can change the 3 wifi nodes that will
generate interference in the "variable" script, inside the iPlatform directory.

It is also possible to adjust the global variables of your sensor code. This can be a huge
time saver, since the sensor code needs to be recompiled and uploaded after each
change. The provided sensor code for this tutorial needs some parameters tweaked for
the actual experiment, so please click on the parameters button.

http://www.wilab.atlantis.ugent.be/jobs-edit.php
http://www.wilab.atlantis.ugent.be/view-schedule.php

CREW - FP7 - GA No. 258301 D3.1

 12

Now all the global parameters of sensor code are listed using a BNF syntax (please
click the bnf button just above the parameters to learn more). For this tutorial, we are
only interested in the prefix Benchmarking_P. The following parameters are important
for this tutorial:

o Benchmarking_P.target: the nodeID of the WSN sink in the experiment (for
3B: 48)

o Benchmarking_P.node_purpose: does a sensor node partake in the
experiment? (for 3B: 50,48:0,1)

For a full API of the benchmarking code, please read more here. After setting the
parameters, it is time to schedule our experiment.

(IMPORTANT: the IBBT w.iLab-t does not allow wifi experiments to be performed
during office hours. It is advisable that you schedule your experiment from 20u-6u
Brussels time or during weekends.)

Now double click the first time slot where you want the experiment to start and select
some consecutive blocks to determine the duration of the experiment. For this
experiment, 20 minutes should suffice. Click Schedule Job to confirm the selection.

Now the experiment will start at the scheduled slot, you can choose to follow the
experiment live or perform an analysis afterwards.

5. Analyse your experiment

There are multiple ways to analyse a running or previous experiment. For this tutorial
we will be looking at three methods:

o w.iLab-t visualiser
o w.iLab-t analyser
o log files

Additionally, you can connect directly to your personal mysql database on the wilab
server using a mysql library in your own scripts, or directly through the phpmyadmin
web interface.

The main difference between the two tools on the w.iLab-t website is that the
visualiser provides a spatial view of the testbed, with typically per node
characteristics, while the analyser provides different graphs and is most often used for

http://www.crew-project.eu/setting-your-own-benchmarking-experiments
http://www.wilab.atlantis.ugent.be/phpmyadmin/

CREW - FP7 - GA No. 258301 D3.1

 12

a temporal view of the experiment (line chart, scatterplots and barcharts are
supported). Both tools can be used during or after an experiment.

We will now customize two configuration files for both w.iLab-t tools and upload
them to our toolbox page. Download the zip file with both xml scripts here, and open
them in your favorite xml/text editor. For both xml files 3 parameters have to be
changed, preferably with a replace all command:

o ___USERNAME___: your w-iLab.t database name (see the info page if
needed)

o ___PASSWORD___: your w-iLab.t password
o ___MSGID___: the ID of the message class you added in the Job page (see

the "Create the sensor job" section if needed)

If you would not like to edit the parameters now, you can upload the files as is, and the
respective tools will ask you to substitute them at run time.

Go to your toolbox page and scroll to the upload box at the bottom:

Click Choose file to navigate to the xml configuration files and select the correct type
(Analyser or Visualiser, corresponding with the first word of the file name) in the box
below. Choose a name for your script, for this tutorial the file name will be used.
Scroll down and press the upload button.

After uploading the configuration files it is time to familiarize ourselves with the two
w-iLab.t analytic tools.

w.iLab-t visualiser

The toolbox page gives access to the visualiser and analyser, where you can select an
XML configuration file for the respective tools. These files can be edited or created by
yourself to suit your experiment.

Select the Visualiser_BenchReliability XML file and click Start Visual to start the
Java applet that will visualise your experiment. Now fill in your database user name
(not email) and password, together with the experiment ID you want to visualise.

Once the applet has finished loading, you should now see a colored circle with the
sensor node id for every active sensor node in your experiment. After some time,

http://www.crew-project.eu/sites/default/files/analyser_visualiser_config.zip
http://www.wilab.atlantis.ugent.be/toolbox.php
http://www.wilab.atlantis.ugent.be/toolbox.php

CREW - FP7 - GA No. 258301 D3.1

 12

every node should log some info to the database and the circles should change color
depending on their individual reliability. The reliability and chosen channel is also
included in the text below each node. Nodes that receive messages are indicated with
an additional circle, with the total count of received messages in text under the node.

w.iLab-t analyser

The analyser is also located on the toolbox page, where you should select the
Analyser_BenchReliability script. This script will present a line chart with different
metrics recorded during the experiment. Fill in your database user name (not email)
and password, together with the experiment ID you want to visualise when prompted.
Please be patient for the graph to load, and you should get a visualisation of the
following metrics:

o Cumulative sensor network reliability
o 30 second window average sensor network reliability
o Cumulative wifi traffic
o Zigbee channel of the sensor nodes

http://www.wilab.atlantis.ugent.be/toolbox.php

CREW - FP7 - GA No. 258301 D3.1

 12

The resulting graph will allow you to more thoroughly analyse the performed
experiment. The applet supports zooming, just by dragging a box over the area of
interest. Be dragging the mouse in a northwest direction the entire x and y range is
plotted again.

CREW - FP7 - GA No. 258301 D3.1

 12

Additionally, the applet provides advanced customization and export functions using
the right click context menu, which can be useful to import the post processed results
in your favorite charting program.

log files

In case your experiment fails, has strange results or you want to look under the hood,
you can access all the raw log data that your scripts produce in the log directory of the
wilabfs server. These log files should be created by yourself if you write your own
scripts, but some example convenience functions are provided (for a more extensive
list, take a look at the source of the “variables” script included in this tutorial)

o Log directory for the specific node:
`find ../ -maxdepth 1 -type l -exec ls -l {} \; | cut -f 2 -d '>'`

o Log directory for the total experiment:
JOBDIR=`dirname $NODEDIR`

This leads to a hierarchical directory structure inside your iPlatform directory “log”
that allows you to store all the desired logs per experiment and per node

Attachment Size
sensor_code.zip 33.81 KB
iplatform_scripts.zip 5.02 KB
analyser_visualiser_config.zip 3.28 KB

Hardware and testbed lay-out

Office environment testbed
The office environment testbed is deployed in the IBBT office spaces, meeting rooms, student
lab rooms, corridors, etc. It consists of 200 wireless node locations, each equipped with one or
multiple (heterogeneous) wireless sensor nodes, as well as 200 x two IEEE 802.11a/b/g
WLAN interfaces.

Important note: a Wi-Fi usage policy is in place at the w-iLab.t Office location. In the
largest part of the building, use of Wi-Fi interfaces is not allowed on weekdays from 6AM to
8PM CET. Use of Wi-Fi in Sandbox zone at the first floor is always allowed.

Map & Zones
A live map of the nodes in the office environment is available here.

As every floor has been split into two zones A and B the nodes are colored blue and green.
There are two special zones on the first floor; a sandbox zone (the time constraints related to
the WiFi use between 8pm and 6am are not applicable here) in orange and black zone of four
nodes that are installed in shielded boxes.

http://www.crew-project.eu/sites/default/files/sensor_code_0.zip
http://www.crew-project.eu/sites/default/files/iplatform_scripts_0.zip
http://www.crew-project.eu/sites/default/files/analyser_visualiser_config.zip
http://wilab.atlantis.ugent.be/visual.php?xmlUrl=data/bart.jooris@intec.ugent.be/upload/%5bw-iLab_t%5d_Visual_Zones_20090527182138.xml

CREW - FP7 - GA No. 258301 D3.1

 12

The screen shot below shows what to expect:

Attachment Size

testbed-office-map.jpg 137.41 KB

Topology
Around 200 identical configurations are deployed at the Zuiderpoort building. Every
configuration exists out of an embedded PC with WiFi based on the Alix, a power over
Ethernet splitter to power the PC, an environment emulator and TMote Sky sensor node. The
power over Ethernet splitters are connected to the in total 12 power over Ethernet switches.
The switches are then connected to the servers of the testbed. There is one fileserver to store
the contents of the experiments and one LAMP server where the Testbed logic is
implemented on. This picture shows global view on the components and the interconnections.

http://www.crew-project.eu/sites/default/files/testbed-office-map_1.jpg

CREW - FP7 - GA No. 258301 D3.1

 12

Attachment Size
topology.jpg 119.66 KB

Configuration
On every of the 200 locations you can find a configuration like this:

http://www.crew-project.eu/sites/default/files/topology_0.jpg

CREW - FP7 - GA No. 258301 D3.1

 12

It consists out of an alix3c3 motherboard with schematics.
This motherboard is based on a 500 MHz AMD Geode LX800 CPU with
256 MB DDR DRAM and the CS5536 chipset.
The alix is equipped with:

• 1 x 1 GB CompactFlash card, SMI 2232 controller, SLC flash. Supports UDMA.
• 2 x Compex WLM54SAG 200mW AR5006XS 802.11a/b/g 54/108 Mbps miniPCI

wireless card (only main connector is used)
• 2 x Pigtail cable, I-PEX to SMA female reverse connector, 15 cm cable
• 2 x Dual band antenna’s with specs
• On the first USB connector the Environment Emulator and the TMoteSky Sensor node

are connected in cascade. The soundblaster input and output of the Alix are connected
to the Environment Emulator.

User Quota
As shown in the picture below, the testbed is divided into several zones. The user quota is
directly related to these zones.

http://www.pcengines.ch/alix3c3.htm
http://www.crew-project.eu/sites/default/files/Office-config.jpg
http://www.crew-project.eu/sites/default/files/33238f_cs5536_ds.pdf
http://www.crew-project.eu/sites/default/files/wlm54sag23.pdf
http://www.crew-project.eu/sites/default/files/dual%20band%20A+B-5DBI-report%202007-10-18.pdf

CREW - FP7 - GA No. 258301 D3.1

 12

Lets say
for example that user John Doe has a quota of 120 minutes. There are several ways for John
to consume his quota :

• Run an experiment of 120 minutes on 1 zone (1A,1B,2A,2B,3A or 3B)
• Run an experiment of 60 minutes on 2 zones combined (floor 1, floor 2 or floor 3)
• Run an experiment of 20 minutes on the entire testbed.

John can offcourse decide to run two different 60 minute jobs on e.g. zone 1A and zone 2B).

After the experiments are finished, John''s user quota will be reset to 120.

Sensornode: TMote Sky
TMote Sky sensor nodes consist of an TI MSP430F1611 processor running at maximum
8MHz, 10KB of RAM, 1Mbit of Flash memory and a Chipcon CC2420 radio operating at
2.4GHz with an indoor range of approximately 100 meters. Each node includes sensors for
light, temperature, and humidity.

• TmoteSky data sheet
• Msp430f1611 data sheet
• Msp430f1611 Family guide
• CC2420 datasheet

http://www.crew-project.eu/sites/default/files/tmote-sky-datasheet.pdf
http://www.crew-project.eu/sites/default/files/msp430f1611.pdf
http://www.crew-project.eu/sites/default/files/msp430f1611FamilyGuide.pdf
http://www.crew-project.eu/sites/default/files/CC2420_Data_Sheet_1_4.pdf

CREW - FP7 - GA No. 258301 D3.1

 12

Attachment Size
tmote-sky-datasheet.pdf 1.17 MB
msp430f1611.pdf 1.34 MB
msp430f1611FamilyGuide.pdf 1.51 MB
CC2420_Data_Sheet_1_4.pdf 995.94 KB

Environment Emulator
The EnvEmu opens up a lot of real-life test cases, of which the major ones are described
below.

• The EE can disconnect the USB power from the DUT, and power it with its own regulating
voltage source. This enables the EE to emulate the real behavior of a battery depleting, energy
harvesting power sources, failing of the mote, ...
• The current used by the DUT can be measured with a sample frequency of 10kHz. Using
this approach, it is very easy to determine the exact power consumption when it is running the
current application, protocol, ...
• The EE has some General Purpose digital Input / Output pins connected to the DUT. This
allows for real-life, real- time digital sensor / actuator emulation. These pins can also be used
to tag specific states generated by the DUT to ease the analysis and classification of the power
consumption.
• Some analogue input/output pins are also connected to the DUT, making the emulation of
real-life, real-time analogue sensors/actuators possible.
• Audio input/output signals can be injected and extracted from the embedded PC to the DUT
making all sorts of audio over sensor network experiments very easy to conduct.
• The EE can be used as an energy harvester.The EE can disconnect the USB power of the
device under test (DUT) and can alternatively power the DUT via its battery interface with a
variable voltage supply. By measuring the current at a high sample rate and use this
information to control the voltage supply we can build a controlled loop feedback mechanism.
To emulate the real behavior of an energy harvester we implemented the law of Coulomb as a
feedback mechanism. Furthermore as we are at all times aware of the consumed current by
the DUT (sample rate of 4 kHz) and the tuned voltage we can determine the exact power
consumption (more details below).

All of this can be prepared before running an experiment or can be adjusted real time during
the experiment by using the scenarios tab.

EE related publications

• I. Moerman B. Jooris P. De Mil T. Allemeersch L. Tytgat P. Demeester, "WiLab: a large-
scale real-life wireless test environment at IBBT", published in Proceedings of DSP Valley
seminar "Sensor driven state-of-the-art Mechatronics", Anderlecht, Belgium, 20 February
2008
• L. Tytgat B. Jooris P. De Mil B. Latre I. Moerman P. Demeester, "Demo abstract: WiLab, a
real-life wireless sensor testbed with environment emulation", published in European
conference on Wireless Sensor Networks, EWSN adjunct poster proceedings (EWSN), Cork,
Ireland, 11-13 February 2009

http://www.crew-project.eu/sites/default/files/tmote-sky-datasheet.pdf
http://www.crew-project.eu/sites/default/files/msp430f1611.pdf
http://www.crew-project.eu/sites/default/files/msp430f1611FamilyGuide.pdf
http://www.crew-project.eu/sites/default/files/CC2420_Data_Sheet_1_4.pdf

CREW - FP7 - GA No. 258301 D3.1

 13

• Pieter De Mil, Bart Jooris, Lieven Tytgat, et al., “Design and Implementation of a Generic
Energy-Harvesting Framework Applied to the Evaluation of a Large-Scale Electronic Shelf-
Labeling Wireless Sensor Network,” EURASIP Journal on Wireless Communications and
Networking, vol. 2010, Article ID 343690, 12 pages, 2010. doi:10.1155/2010/343690

If you take a closer look to the block diagram of the EnvEmu you will notice that is based on
TMote Sky. We stripped down the TMote Sky by removing the sensors, leds, buttons, radio,
I2C msp flash lock circuit and also flash. So basically we stripped it down to ftdi, msp430,
IDC header and radio interface. We added a 3ports USB hub, 2 USB switches that are
connected to slave female USB connectors, 7 segment display, battery emulator and audio
jacks. See the block diagram below.

Both the front an the back view of the board can be find here:

CREW - FP7 - GA No. 258301 D3.1

 13

The electronic diagram can be found here

http://www.crew-project.eu/sites/default/files/env_emul_v2_schema.pdf

CREW - FP7 - GA No. 258301 D3.1

 13

Here you can find the detailed electronic circuit of the battery emulator.

A new sensor board was created, which is basically a stripped version of the TMote Sky and
we called it the Environment Emulator (EE). On the EE we connected VDD (schematic) to
the USB power of the board. The ADC and DAC lines (schematic) are connected to DAC1
and ADC4 of an MSP430. The DUT lines are then interfaced to the battery interface of the
device under test. Implementing just the schematics as it is and connect it to an existing tmote
or telosb gives the same functionality. The main component in the schematic is U1 which is a
rail-to-rail, high output current amplifier. U1a is used to implement a voltage follower and
maps the 2.5 V coming from the DAC (maximum output of DAC1 of the MSP430) to 3.5V
(the maximum supply voltage of the DUT). Standard op amp schematics are not able to drive
high capacitive loads . C1 and R10 were added in the second version of the EE and are used
as inner and outer loop compensations for a better response when driving high capacitive
loads. 10uF is a typical input capacitor of an sensor node and is much higher than what an
opamp (typical 200pF) can drive without compensations. U1b is used to implement a
differential amplifier and maps a current of 70mA trough R4 and R5 to 2.5V on the input of
the ADC (the maximum input voltage of ADC4 of the MSP430). To implement the law of
Coulomb a tinyos application was developed where we implemented an user event 'stream'
with these parameters; start value which is the DAC value at t0, virtual capacitor and the
harvester itself. When executed a continuous sampler will start on ADC4 with a sample rate
of 250us. On every sampler buffer done event the next Dac value will be calculated as follows
(sampler buffer size is 50):

DacValue(t+1) = DacValue(t) + SUM (harvester - samplerBuffer(t)[i]) / virtualCapacitor.

The unit of the virtualCapacitor is 5uF and is derived from the
interSampleDelay/numberOfSamplesPerBuffer. For example; for a battery emulation of
2.4V/3000mAh, we could define a full battery with initial voltage of 2824 (2.400 V) and a
harvester which is equal to zero and a capacitor of 4500 F or the virtualCapacitor equal to

CREW - FP7 - GA No. 258301 D3.1

 13

1.25 x 60 (min) x 60 (s) x 200k. For solar cell emulation, we could define a capacitor with
initial voltage of 0 V and a harvester which is equal to 1mA (59) and a capacitor of 1F. On the
DUT the first thing to do is to check if there is enough energy and if there is the radio can be
enabled. The other way around would put the sensornode in an endless reboot sequence. For
now with a interSampleDelay of 250uS will get a reaction time of 50 samples x 250 us which
makes 12,5 ms. We will speed this up in the near future.

Zwijnaarde testbed (Pseudo shielded, open
environment)
Important information on the Zwijnaarde testbed: please note that we are currently in the
process of completing the Zwijnaarde rollout [current status, mid September 2011: we are
now installing Ethernet and power cables; our hardware is in stock, the software is developed,
tested, and ready to be deployed). The Zwijnaarde testbed will soon be accessible in a similar
way as the office testbed.

The testbed will at latest be available to external users when new partners join the CREW
project as part of the open call: this is January 2011.

Information on the components and functionality that will be available can already be
obtained from the sections below.

Configuration
The fixed nodes are equiped with:

• ZOTAC NM10-A-E
o specs

http://pden.zotac.com/index.php?page=shop.product_details&flypage=flypage_images.tpl&product_id=209

CREW - FP7 - GA No. 258301 D3.1

 13

• KINGSTON ValueRam 4GB DDR2 800MHz PC2-6400 CL6
• SEAGATE Momentus 7200.4 160GB (2.5", SATA, 7200RPM, 16MB)
• IN-WIN BQ656 (mini-ITX, 160W power supply)
• 2 Wifi

o Sparklan WPEA-110N/E/11n mini PCIe 2T2R chipset: AR9280
• 2 x 2 Attenuator 20 dB

o Telegärtner J01156R0041; R-SMA (m-f) 0-6GHz 50Ohm 2W
• Environment Emulator

o Eev2 (IBBT design)
• Sensornode

o RM090 (see page on the RM090)
 Msp430f5437 (18MHz-256k Flash- 16k Ram)
 CC2520

Map
The nodes in the testbed are mounted in 66m by 20.5m open room in a grid configuration
with dx = 6 meter and dy=3.6 meter. The 60 installed nodes are represented by the blue
locations on the picture. The green and orange location will be used to connect the mobile
nodes, the SDRs (USRP, WARP,...) and the cameras.

A picture of the room can be found here. In the front you see node on location J3, in the same
line after the pipe you can see the locations J4,... As one can notice we have installed some
copper tape on the non metalic pipes to minimize the interference with the Clean Room
(which is located under the testbed) itself.

http://www.crew-project.eu/portal/wilab/rm090

CREW - FP7 - GA No. 258301 D3.1

 13

Attachment Size
Wilab2_CR_shielding4.JPG 305.96 KB

Topology
The hardware components and there interconnections

http://www.crew-project.eu/sites/default/files/Wilab2_CR_shielding4.JPG

CREW - FP7 - GA No. 258301 D3.1

 13

The testbed is accessible via openvpn gateway (the key symbol on top) which gives the
experimenter access to the OMF based lab. The two components on the edge of the cloud
imply that all the components inside the cloud are connected to it. The switch symbol
represent a stack of switches to interconnect all the devices on a Gigabit LAN where possible.
The relay symbol represents the PDUs (power distribution units) to remotely get an idea on
the power consumption and to switch off and on the devices. The lights can also be switched
on and off remotely. The two white servers are ESXI servers. On top of them 5 VMs are
running with OMF related managment software and backup services. The functionality of the
VMs are AM (aggregate manager), EC (experiment controller) and a XMPP (Extensible
Messaging and Presence Protocol) server. Each ESXI server frequently takes snapshots of all
the running non backup VMs and copies them to the VM backup server on the other ESXI
server. In case of a hardware failure we should be able to fast recover. Further there are 8
servers with identical hardware of the ESXI servers (except for the hard disks 160G instead of
2 times 1T) available for the experiments. The 60 dual mode access points symbols at the left
side of the servers represent the described configuration. Some of them will be extended with
OR IMEC sensing engine, WiSpy or SDR (Warp or USRP UN210 or E100) The 20 dual
mode access point symbols on top of a robot platform on the right side of the servers
represent the mobile nodes which can be expected end of 2011. Last but not least we have 6
axis cameras to verify the mobile nodes locations or to debug the leds on the sensornodes.

Some detailed information on the hardware can be found here:

http://mytestbed.net/
http://www.crew-project.eu/portal/wilab/configurationzw
http://www2.imec.be/
http://www.metageek.net/
http://mangocomm.com/products/kits/warp-mimo-kit-v2
http://www.ettus.com/order

CREW - FP7 - GA No. 258301 D3.1

 13

• The 10 servers with dual Intel®Xeon®Processor 5600 Series and 12GB RAM are
implemented as 5 1U twin machines with specs

• The 13 PDUs which can drive and measure 104 230VAC outlets are desribed in detail
here.

• Two types of axis cameras will be installed;
o 6 AXIS 212 PTZ Webcam
o 2 AXIS 214 PTZ

• The installed switches are of the type
o HP procurve 2510G
o HP procurve 2610
o HP procurve 2626-PWR (to power alix boards (mobility mgt) and the AXIS

212 PTZ.
• Siemens LOGO! 230RCE will be used to control the lights.

Sensornode: RM090
The RM090 sensor node is a joint design by Rmoni and IBBT. The major reason for IBBT to
create a new sensor node was of the lack of sufficient resources on the TMote Sky (see table).
Especially the 48k of flash on the TMote was the enabler to upgrade the testbed.

Feature Imote
(2003)

Mica2
(2003)

MicaZ
(2004)

Telos
(2005)

IBBT-Rmoni RM090
(2010)

CPU type @[MHz] 32bit ARM
@12

8bit Atmel
@8

8bit Atmel
@8 16bit TI @8 16bit TI @18MHz

SRAM [kB] 64 4 4 10 16

FLASH [kB] 512 128 + 512 128 + 512 48 KB /
1024 KB

256 KB/128 KB +
16KB eeprom

Radio BT 300-
900MHz 802.15.4 802.15.4 802.15.4 2.4GHz band

Bandwidth [kb/s] 720 15 250 250 250

Carrier Sense/
Rx/Tx Current [mA] 15 / 24 / 24 08/10/27 08/20/18 01/20/18

18.5 /18.5 /
33.6@4dBm
25.8@0dBm

sleep current
[uA] 01/01/50 19 27 6 2

OS support TinyOS TinyOS TinyOS TinyOS TinyOS or IDRA

http://www.supermicro.nl/products/system/1U/6016/SYS-6016TT-TF.cfm?parts=SHOW
http://www.crew-project.eu/sites/default/files/RC0816_DataSheet-new.pdf

CREW - FP7 - GA No. 258301 D3.1

 13

We tried to be as compliant as possible with the TMote Sky with the second generation chips
of TI the msp430f5437 and the CC2520. The IDC headers, the 3 leds, the USB interface are
as much compliant as possible.

Here you can find a block diagram of the RM090:

Attachment Size
ilabnode.png 113.9 KB

Cognitive components
At the pseudo-shielded Zwijnaarde location, a set of cognitive networking platforms are
available. They can be remotely accessed over the internet.

Again, it is up to the experimenters to decide how to use the hardware that is made available.
Signals may only be transmitted in the 2.4 GHz and 5 GHz ISM band due to license
restrictions.

We are in the process of making the cognitive components available over the Internet. The
integration will at latest be completed when new partners join the CREW consortium as part
of the open call. Please check back later updated information.

http://www.crew-project.eu/sites/default/files/ilabnode.png

CREW - FP7 - GA No. 258301 D3.1

 13

Using the hardware: tools, interfaces,
services

Change sensor code variables at schedule
time with BNF syntax
When you want to schedule a job on the w-iLab.t testbed with sensor code included, you can
use our dynamic parameter utility.

This tool allows you to redefine global variables in your nesc code (TinyOS or Contiki) at
schedule time using our BNF syntax. So you are not limited to just substituting one value, but
have a powerful toolset to scan parameter ranges and schedule multiple experiments at once.
More information on the Backus-Naur Form available on Wikipedia

To access this utility, click the parameters button on the w-iLab.t scheduling page.

In the table that appears, all global variables in the WSN images associated with the selected
job are displayed. You can simply change the compiled value for each displayed variable, or
you could use the more elaborate BNF syntax to create more powerful expressions that grant
the following possibilities:

• schedule multiple experiments by using the pipe "|" character
• change variable for a specific node or a list of nodes by using a comma ","
• set a variable for a range of nodes using ".."

The available BNF syntax to utilize this functionality is given below, together with some
examples:

<experiment>::=<paramlist>|<paramlist>"|"<experiment>

http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form

CREW - FP7 - GA No. 258301 D3.1

 14

<paramlist>::=<paramsublist>|<paramsublist>";"<paramlist>
<paramsublist>::=<nodelist>":"<paramvalue>|<paramvalue>
<nodelist>::=<nodeid>|<nodeid>".."<nodeid><nodelist>","<nodelist>
<paramvalue>::=<number>

Example:
For the parameter Q we define 4 experiments where we assign the values A, B, C and D for
all the nodes.
The expression for Q will be: A|B|C|D

A more elaborate example:
For the parameter P we can define 3 experiments X|Y|Z. During experiment X we assign the
value A for the nodes 1 to 10, the value B for the nodes 12,15 and 18 and the value C for all
the other nodes. For experiment Y, the value A will be assigned to the parameter P. During
the last experiment Z we will assign the value C for the nodes 10 to 20 and the value B for all
the other nodes.
The expression for P will be: 1..10:A;12,15,18:B;C|A|10..20:C;B

When we now would schedule this job with parameters Q and P redefined, (3x4) 12
experiments will be generated!

NOTE: Be careful while writing expressions (NO SPACES,...) as there is no syntax check!
Values (here A, B, C and D) are parsed as numbers, make sure that your data structure accepts
your new input.

Power measurements on the sensornode
To measure the real time power consumption of any electrical device you will need a power
source which is suited for the device under test, a voltage and current meter.

CREW - FP7 - GA No. 258301 D3.1

 14

These three components are integrated in the EE.

Please have look at the internals of the EE at... The adjustable power source (aka battery
emulator) is controlled by ADC1 of msp430 on the EE board. The maximum value of the
ADC is amplified to the maximum of the msp430 family which is 3.60V. The second
component, the voltage meter, comes for free as we can perfectly control the power source.
The current meter is implemented by putting a small resistor in serie with the device under
test. By amplifying and measuring of the voltage over this serie resistor we get a good idea of
the current at ADC4. As we can sample the ADC4 at quite a high rate (10kHz) we get a real
time power measurement which can show the power consumption at 802.4.15 packet level.

Every sensor node on the testbed has an accompaning EE so you can also get an idea of the
power consumption at network level.

To execute a power measurment on the testbed you will need to execute the following events
(see events):

• disable the USB power (gpioPinStatus ; disconnect the USB 5V line)
• enable the battery emulator (streamer event)
• start the current measurments (sampler event)

The order of execution is important! If you mix up the first two then an extra current of 5mA
from an iniatialized USB chip will also be measured. If you don't execute the first event the
node will partialy be powered by the USB and the battery emulator.

You can use the [w-iLab.t] visualiser to show the results.

Much more details about these components can be found on the scenario tab when enabling
streamer (battery emulator) and sampler events.

RadioPerf tool
This contains more information on a TinyOS program called RadioPerf, which we
developed at IBBT.

Introduction
RadioPerf functions both as a packet generator and a basic packet analyzer, making it very
useful to test transmission performances. It consists of two different parts:

• The first part is a java GUI, running on the host computer, which sends control
messages to the nodes and receives reports from the nodes.

• The second part is a TinyOS program running on the nodes itself. This tiny program
receives the control messages from the host computer, and send back reports.

Download the source code
The source code is available here .

http://www.crew-project.eu/portal/wilab/visualiser-analyser-tools
http://wilab.atlantis.ugent.be/scenario-edit.php
http://www.crew-project.eu/sites/default/files/RadioPerf.zip

CREW - FP7 - GA No. 258301 D3.1

 14

Instructions on how to compile all parts of the application is described below. We will release
an easier-to-install version of this application in the near future.

Compiling the TinyOS sensor code
If you don't have TinyOS installed on your system, please follow the steps described on this
page .

Attach a sensor node to your PC, step into the RadioPerf directory and execute :

make telosb install,1

This command will program the sensor node with the RadioPerf source code and give it ID 1.

More info on programming TinyOS compatible sensor nodes can be found on
http://www.tinyos.net . The tutorials contain everything you need to know about
programming TinyOS sensor nodes.

Compiling the Java GUI
Go to the java_Netbeans-5.5 directory and execute :

RadioPerf/java_Netbeans-5.5$../commandline/genMakefile ../RadioPerfMessages.h
src/

You should now see a “Makefile” in the current directory.

If you encounter errors like:

• src/RadioPerfView.java:22: package org.jCharts.axisChart does not exist

import org.jCharts.axisChart.ScatterPlotAxisChart;

• src/RadioPerfApp.java:140: package org.jdesktop.layout does not exist

org.jdesktop.layout.GroupLayout layout = new
org.jdesktop.layout.GroupLayout(getContentPane());

then your CLASSPATH was not correct. Make sure your CLASSPATH contains the javalib
directory.

Running RadioPerf
Step into the java_netbeans-5.5 directory and execute :

./run -comm serial@/dev/ttyUSB0:telosb

You should now get a screen such as shown in the figure below.

http://docs.tinyos.net/tinywiki/index.php/Installing_TinyOS_2.1.1
http://www.tinyos.net/

CREW - FP7 - GA No. 258301 D3.1

 14

CREW - FP7 - GA No. 258301 D3.1

 14

The different possible settings can be adjusted in the upper left corner of the window. The
figure below gives an overview of the most important settings per category.

The lower left window contains several measured statistics that can be shown by clicking on
the relevant item:

• txCounter Indicates the number of packets which have been transmitted.
• txErrorCounter Indicates the number of packets that the transmitter could not send.
• minEstimatedNoiseFloor Returns the lowest result from the environment sampler.
• avgEstimatedNoiseFloor Returns the average result from the environment sampler.
• maxEstimatedNoiseFloor Returns the highest result from the environment sampler.
• numberOfPacketsReceived Indicates the number of packets that have been received by

the node.
• numberOfPacketsLost Indicates the number of packets that have been lost as

calculated by the receiver (each packet contains a sequence number. A missing
sequence number is a lost packet for the receiver).

• min/avg/maxRSSI Indicates the RSSI (received signal strength) of arriving packets (in
dBm).

• min/avg/maxLQI Gives an indication of the LQI (Link Quality Indicator) of arriving
packets (between 0 and 255).

Setting up your own benchmarking
experiments
The w-iLab.t testbed provides a set of tools to support benchmarking and repeatable
experiments in general. Currently, these tools can be used separately or in conjunction to
create a complete benchmarking workflow.

Repeatable Wi-Fi experiments

CREW - FP7 - GA No. 258301 D3.1

 14

Repeatability is a strong concern when considering wireless experiments. Through the
iPlatform concept the testbed provides the repeatable execution of scripts on the iNodes.
Using iPlatforms, a user defines a remote mount of the w-iLab.t fileserver on each node,
where an executable file, start_mount_script, will be executed after node booting.

By design choice there is no strict synchronization present in the execution of these start
scripts, but the code for using the shared directories for synchronization is available for
download here. By using this or a user chosen method is is possible to schedule and forget
your benchmarks, and analyse them afterwards.

For more information on using the iNodes for your experiments, please see the detailed iNode
documentation.

Creating a repeatable environment

Part of the CREW benchmarking goals is the creation of repeatable environments. On the w-
iLab.t testbed we currently can provide a repeatable home environment that can be
customized to a user's needs. Variations of this and future environments are to be released as
well. To see a demonstration of this environment, please see the advanced tutorial.

To use the Home Environment in your experiments, download the iPlatform scripts here,
unzip them in an iPlatform directory of your choosing and give start_mount_code executable
permissions. Before running, please take a look at the variables file, containing all adjustable
parameters for the experiment. The file is annotated, but the most important variables are
listed in the following table

VARIABLE Purpose
USERNAME w-iLab.t database username

USERPASS w-iLab.t database password

USERDB w-iLab.t personal database (often equals username)

NCSERVERDIR Your iPlatform directory

CHANNEL The 802.11g channel used

TXPOWER Transmission power

DURATION Total runtime of the script

EMAILINTERVAL Duration between email checks

DATAWAIT1 Start first data download after x seconds

DATADURATION1 First data download will take x seconds

DATAWAIT2 Start second data download x seconds after the first

DATADURATION2 Second data download will take x seconds

VIDEOWAIT Start video stream after x seconds

VIDEODURATION Video stream will take x seconds

VIDEOBW UDP bandwidth used by the video stream in Mbps

http://www.crew-project.eu/sites/default/files/synchronization.zip
http://www.crew-project.eu/inode-use-embedded-pc-and-wi-fi
http://www.crew-project.eu/inode-use-embedded-pc-and-wi-fi
http://www.crew-project.eu/advanced-tutorial-combined-wifi-and-sensor-experiment
http://www.crew-project.eu/sites/default/files/iplatform_scripts_0.zip

CREW - FP7 - GA No. 258301 D3.1

 14

We are currently transitioning to a new experimentation control framework for w-iLab.t
(OMF), where the experiments themselves can be parametrized, allowing a more generic
approach to defining an environment. When available, a detailed explanation to this new
approach will also be available here.

Benchmarking Wireless Sensor Networks
The w-iLab.t testbed provides different facilities for a WSN protocol developer to benchmark
their own code. The only requirement is that your developed code is compatible with the
telosb mote. Any WSN code can be benchmarked using our repeatable environments if the
variables that need to be varied are exposed as global variables in your WSN code (see how to
change global variables at schedule time). However, a benchmarking API is provided that
takes care of the repeatable execution of your WSN code and reports all logged data in a
standardized format to the w-iLab.t database for quick visualization.

This API is implemented as TinyOS modules that should be included in your compiled
TinyOS image, or for the IDRA framework, which is a networking focused modular
development framework. The IDRA API is closely supported and follows the latest features
of IDRA, and can be downloaded here. To learn more about IDRA, its purpose and how to
configure it, please visit the official website, idraproject.net. The TinyOS modules are
currently being updated to support the same features and will be available soon.

To schedule benchmarks using the provided API w-iLab.t uses a BNF syntax to define
parameters or parameter traversals. More information on the BNF system is available here.

The full benchmarking API is given in the following table. for IDRA, these variables are
available as Benchmarking_P.<parameter_name>

Parameter name (default
value) description range

node_purpose (0) Send packets? 0:no 1:yes 0 - 1

target (1) Node id of packet destination 0 - 65535

data_size (15) Size of application payload in
B

6 - 255 (6B needed for
tracking)

send_interval (15000) Packet Interval (PI) in ms 0 - 232-1

send_variation (15000) Wait before first packet in ms 0 - 232-1

random (0) Random Packet Interval? 0 - 1

random_mindelay (500) Minimal random PI in ms 0 - 65535

random_window (500) Random PI window in ms 0 - 65535

retry (0) Retry failed send attempt 0 - 1

retry_mindelay (150) Minimal retry delay in ms 0 - 65535

retry_window (150) Retry window in ms 0 - 65535

http://www.crew-project.eu/change-sensor-code-variables-schedule-time-bnf-syntax
http://www.crew-project.eu/change-sensor-code-variables-schedule-time-bnf-syntax
http://www.crew-project.eu/sites/default/files/IDRA_Benchmarking.zip
http://idraproject.net/
http://www.crew-project.eu/change-sensor-code-variables-schedule-time-bnf-syntax

CREW - FP7 - GA No. 258301 D3.1

 14

anycast (0) Ignore destination at receiver 0 – 1

debug_mode (3) Logging method 0:none - 1:aggregates -
2:only network info - 3:all

aggregation_interval
(10000)

When to output aggregated
logs 0 - 232-1

Benchmarking analysis
The final step in the benchmarking process, is also supported by the w-iLab.t testbed. When
using the WSN API all the logs from a benchmark are automatically inserted into a separate
database table using a fixed format. This table is not restricted to WSN results, but then the
data has to be inserted following the described logging format below. This is however the
only requirement to use the provided analysis tools

Column name description range
version Versioning number 0 - 255
type Type of log message 0 - 255
arg Argument of message 0 - 65535
msg_uid Uid of logged packet 0 - 65535
origin Origin of logged packet 0 - 65535
other_node Destination of logged packet 0 - 65535
Msg_seq Sequence no. of logged packet 0 - 65535
seqno Sequence no. of log message 0 - 232-1
motelabMoteId Node id (db generated) 0 - 65535
motelabSeqNo Global sequence no. (db generated) 0 - 232-1
insert_time Log time (db generated) 0 - 232-1

Following events can currently be logged, according to the benchmarking API: node purpose,
boot time, send attempt, send success, send failure, radio sleep duration, total sent packets,
total received packets, debug statistics (total debug msgs/fails)

All log data is processed using sql instructions and presented in a barchart, linechart or a 2d
map of a testbed using the analyser and visualiser tools. For more information how to use and
configure these tools can be found here.

Following metrics and visualisations are implemented and available for download here

• Reliability: calculated on application level, each packet that is sent by a SUT should
be received by the destined SUT to reach 100% reliability for the sending SUT.
Available as analyser and visualiser tool.

• Packets sent/received: The total amount of packets sent or received by the radio
adapter, also available as packets sent/received per second. Available as analyser and
visualiser tool.

• Radio sleep percentage: The fraction of the benchmark that the radio adapter spends
sleeping, this is the primary energy efficiency metric for WSN and similar networks of
embedded devices. Available as analyser and visualiser tool.

http://www.crew-project.eu/visualiser-analyser-tools
http://www.crew-project.eu/sites/default/files/visualiser_analyser_config.zip

CREW - FP7 - GA No. 258301 D3.1

 14

• Wifi throughput: Visualises the network wide wifi throughput, as logged by the
environment. Can only be used when using one of the repeatable environments.
Available as analyser.

• Application level events: the amount of network wide events visualised over time,
includes packet sending, receiving, errors and boot times. Available as analyser.

Attachment Size
synchronization.zip 677 bytes
IDRA_Benchmarking.zip 1.99 MB
visualiser_analyser_config.zip 10.95 KB

Using Environment Emulator events
Environment Emulator
First check out the EE hardware page for information about the capabilities and hardware
specifications of the Environment emulator.

Create a scenario
This page will describe step by step how you can create a scenario which will disable the
USB port on the Environment Emulator on some locations, thus cutting the power to the
sensor node and re-enable the USB port after 5 minutes.

1. Go to the scenario page on Wilab.t and click Create new scenario.
2. Insert a name and description(optional) and click Next.
3. One scenario contains one or more events. In the list on the left, you can see all

available events that can be defined on the Environment Emulator. Select
SetGpioPinStatus and click Add>>.

4.

Scroll down to see more info on the event itself and for a list of all pins that can be set
or cleared. If we want to disable the USB port to which the sensor node is connected,
we need to clear GPIO pin B.

http://www.crew-project.eu/sites/default/files/synchronization.zip
http://www.crew-project.eu/sites/default/files/IDRA_Benchmarking.zip
http://www.crew-project.eu/sites/default/files/visualiser_analyser_config.zip
http://www.crew-project.eu/content/environment-emulator
http://wilab.atlantis.ugent.be/scenario-create.php

CREW - FP7 - GA No. 258301 D3.1

 14

5. Now scroll down to the bottom of the page to select on which nodes you want to
execute the event. Node ID's in this list should be separated by comma's. The use of
ranges is also permitted. (e.g.: 1-50,62,63)

6. The last item we need to specify is when the event is executed relative to the start of
the experiment. Just choose a reasonable value here.

7. Now that we have an event that disables the USB port, we just need to add another
similar event that will re-enable the USB port. Select SetGPIOPinStatus again, scroll
down and now select Set GPIO B instead of Clear.

8. Click the Submit button to save your scenario.

Info on other possible scenario's can be found on the scenario page on Wilab.t. Just select an
event, add it to your scenario and additional info on that event will appear.

Execute a scenario

Manually

If your experiment is running, you can choose to execute your scenario by selecting it on the
scenario edit page and clicking the Start Scenario button.

Automatically

It is possible to connect your scenario to an experiment. Select one of your previously created
jobs and go to the Scenario tab. In the list on the left, all your scenario's are displayed. Select
one and click Add>> to connect it to your job.
It is possible to specify the offset for the execution of the scenario('s) (in seconds) relative to
the start of the experiment. This value is default set to 45 seconds and should probably not be
set to a lower value to be sure all your nodes are started before you execute your scenario.

Example
Check out the http://www.crew-project.eu/portal/wilab/power-measurements-sensornode page
for an example experiment using scenario's.

Visualiser & Analyser tools
Introduction
Both of the tools described on this page are made to visualise data that was stored in the
MYSQL database during an experiment. The only difference between the visualiser and the

http://wilab.atlantis.ugent.be/scenario-create.php
http://wilab.atlantis.ugent.be/scenario-edit.php
http://www.crew-project.eu/portal/wilab/power-measurements-sensornode

CREW - FP7 - GA No. 258301 D3.1

 15

analyser is how they show the data to the user. Please take a look at some examples you can
find on the toolbox page.

Java Installation
The applet should work by default in Windows. Just install Java JRE if it doesn't.

In Ubuntu you will need to install the sun-java6-plugin to get the applet working. The applet
will NOT load with the alternative OpenJDK plugin (IcedTea). If you don't find the sun-
java6-plugin (apt-get install), then execute following steps where you replace lucid by your
own Ubuntu version.

sudo add-apt-repository "deb http://archive.canonical.com/ lucid partner"
sudo apt-get update
sudo apt-get install sun-java6-jre sun-java6-plugin
sudo update-alternatives --config java

The applet has been tested in both Firefox, Internet Explorer and Google Chrome, but should
work in other browsers too.

Visualiser
The visualizer shows information collected from the sensor nodes. The type of information
and the properties of the visualiser are defined in a XML-file. You can define your own XML
file. Temperature readings across the building are shown by default.

A visualiser XML file should follow the structure as shown in the picture below.

http://wilab.atlantis.ugent.be/toolbox.php
http://archive.canonical.com/

CREW - FP7 - GA No. 258301 D3.1

 15

Database connection

The first section defines the connection to the MySQL database. The info below shows how
to connect to the wilabinfo database on the Wilab.t server as user wilabinfo. This database
contains information about the location of the nodes and the temperature and humidity
readings they perform when no other experiment is running.

<dbConnection>
 <host>wilab.atlantis.ugent.be</host>
 <port>3306</port>
 <database>wilabinfo</database>
 <user>wilabinfo</user>
 <password>wilabinfo</password>
</dbConnection>

Just change the database, user and password fields if you want to connect to your own user
database. Your credentials can be found on the user-info page on Wilab.t.

Graphical Settings

The graphics section of the XML file allows you to adjust the looks of the visualiser. For most
experimenters the default settings will be fine. If you want to play around with e.g. the
diameter of the nodes, or the font of the text, just adjust the values in the right section and
check out the result.

<graphics>
 <zoom>1</zoom>
 <heartbeat>1000</heartbeat>
 <nodes>
 <diameter>150</diameter>
 <zoomFactor>0.8</zoomFactor>
 </nodes>

 <size>70</size>
 <zoomFactor>0.8</zoomFactor>

http://wilab.atlantis.ugent.be/user-info.php

CREW - FP7 - GA No. 258301 D3.1

 15

 <lines>
 <thickness>1</thickness>
 <zoomFactor>1</zoomFactor>
 </lines>
 <links>
 <bidirectional>true</bidirectional>
 </links>
</graphics>

Map section

The map section tells the visualiser where it can find the coordinates of all the walls. A wall is
stored in the database by two coordinates (X1,Y1) representing one end of the wall and
(X2,Y2) representing the other end. This section should never be modified if you are using
the Wilab.t testbed. You could modify this section if you wanted to visualise e.g. your own
building.

<map>
 <sql info="selects all the nodes">
 select x1, y1, x2, y2, floor from map where floor>0
 </sql>
 <column_x1>x1</column_x1>
 <column_y1>y1</column_y1>
 <column_x2>x2</column_x2>
 <column_y2>y2</column_y2>
 <column_floor>floor</column_floor>
</map>

Node locations section

Similarly to the map section, the node section defines the coordinates of all the nodes that you
want to show on the visualiser. Every node is specified by an ID, an (X,Y) coordinate and a
floor. This section should also not be modified for most experiments on Wilab.t.

 <nodeLocation>
 <sql info="selects all the nodes">
 select id, x, y, floor from coordinates where floor>0
 </sql>
 <column_id>id</column_id>
 <column_x>x</column_x>
 <column_y>y</column_y>
 <column_floor>floor</column_floor>
 </nodeLocation>

Timeslider

The timeslider on the visualiser (double-click on the map) allows you to visualise your
experiment after it has been completed. It also has the ability to automatically replay your
experiment. The XML for this should never be modified.

CREW - FP7 - GA No. 258301 D3.1

 15

Node info

This is probably the section where you will have to modify some things to represent your own
experiment. There are 3 separate properties you can control :

1. On every node you can define what label is shown on the node itself. This info is
called the ID.

2. Additionally you can define what kind of information is shown under the nodes. This
is called the info field.

3. Lastly you can choose what color is being used to display a node. This is the color
field.

To show your own info, just write some SQL statement and give the result the alternative
name as shown above (so id, info or color). The XML below shows an example of the
temperature visualiser on Wilab.t.

<nodeInfo>
 <sql>
 SELECT
 moteid as id,

 CASE
 WHEN avg(temp) = 0 THEN concat(hour(max(updated)), ":",
minute(max(updated)))
 WHEN avg(temp) > 50 THEN concat(hour(max(updated)), ":",
minute(max(updated)))
 WHEN avg(temp) > 0 THEN concat(hour(max(updated)), ":",
minute(max(updated)), "~", round(avg(temp)), "'C")
 ELSE 'no info'
 END
 as info,

 CASE
 WHEN avg(temp) = 0 THEN '0x000000'
 WHEN avg(temp) > 50 THEN '0x000000'
 WHEN avg(temp) > 29 THEN '0xFF0000'
 ELSE '0x0000FF'
 END
 as color

 from sensorinfo, timeInfo
 where @timeslider -7*60 < UNIX_TIMESTAMP(updated) AND
 UNIX_TIMESTAMP(updated) < @timeslider + 3*60
 group by moteid
 </sql>

CREW - FP7 - GA No. 258301 D3.1

 15

 <column_id>id</column_id>
 <column_info>info</column_info>
 <column_color>color</column_color>

</nodeInfo>

Link info

The visualiser is also able to show packet transmissions. A link has several properties :

1. id_begin : the ID of the sending node
2. id_end : the ID of the receiving node
3. info : some extra information shown on the link
4. color : the color of the arrow

If you don't want to show any link info, just leave the XML as shown below in the
configuration file. If you want to show links, adjust the XML file in the same way as was
shown for the Node info section.

<linkInfo>
 <sql>
 SELECT
 0 as id_begin,
 0 as id_end,
 '1' as info,
 '0x00FF00' as color
 from sensorinfo
 where id =0;
 </sql>

 <column_id_begin>id_begin</column_id_begin>
 <column_id_end>id_end</column_id_end>
 <column_info>info</column_info>
 <column_color>color</column_color>
</linkInfo>

The figure below shows what can be achieved with the visualiser.
In this example node 60 and 80 are sending with transmit power 7 (txPwr) and all receiving
nodes are pointed to with an arrow showing the receiving RSSI of that link. Also, every node
shows its estimated noise floor (ENF) .

CREW - FP7 - GA No. 258301 D3.1

 15

User Parameters

Whenever you want the visualiser to ask the user to fill in a parameter use three underscores
before and after the parameter name (e.g. : ___MOTEID___ , ___Username___ ,
___Password___ , ...).

Analyser
The analyser shows a chart with information collected from the sensor nodes. The type of
information and the properties of the chart are defined in a XML-file. You can define your
own XML file for the analyser. An example of the analyser showing temperature and
humidity readings from node 28 is shown below.

The XML file looks like this :

CREW - FP7 - GA No. 258301 D3.1

 15

Database connection

The database connection happens in the same way as for the visualiser.

Graphics

<heartbeat>10000</heartbeat>
<info>Analyse Temp and Hum on Node ___MOTEID___</info>
<xAxis>Relative time (min)</xAxis>
<xMin>0</xMin>
<xMax>0</xMax>
<xScaleStep>0</xScaleStep>
<yAxis>T 'C</yAxis>
<yMin>0</yMin>
<yMax>0</yMax>

• The heartbeat defines the refresh rate of the analyser (in seconds)
• Info defines the label that is shown at the top of the analyser.
• xAxis : label on the x axis
• xMin : start of the range for the x axis (can be 0 if x is defined in the scatter

section)
• xMax : end of the range for the x axis (can be 0 if x is defined in the scatter

section)
• xScaleStep : size of the steps on the x axis (can be 0 if x is defined in the scatter

section)
• yAxis / yMin / yMax : Same as x axis

General

This section can be used to prepare some views that can be used in the scatter section.

<prepareView info="get last samplereport">
 CREATE OR REPLACE VIEW sensorinfofirst AS
 select *
 from sensorinfo

CREW - FP7 - GA No. 258301 D3.1

 15

 where motelabSeqNo <= 20
 ORDER BY motelabSeqNo DESC
</prepareView>

In this example you could then use the view sensorinfofirst in the scatter section.

Scatters

In the example below two scatters are defined. One shows the temperature on the y-axis, the
other one shows the humidity. Both scatters have relative time as x-axis.

 <scatters>
 <scatter>
 <name>temp</name>
 <color>0xFF0000</color>
 <sql>
 select TIMESTAMPDIFF(MINUTE, timeInfo.lastInsert, updated) as x, temp
 from sensorinfo, timeInfo
 where moteid=___MOTEID___
 ORDER BY updated DESC, id DESC
 </sql>
 <column_x>x</column_x>
 <column_y>temp</column_y>
 </scatter>

 <scatter>
 <name>hum</name>
 <color>0x0000FF</color>
 <sql>
 select TIMESTAMPDIFF(MINUTE, timeInfo.lastInsert, updated) as x, hum
 from sensorinfo, timeInfo
 where moteid=___MOTEID___
 ORDER BY updated DESC, id DESC
 </sql>
 <column_x>x</column_x>
 <column_y>hum</column_y>
 </scatter>
 </scatters>

User Parameters

Whenever you want the analyser to ask the user to fill in a parameter use three underscores
before and after the parameter name (e.g. : ___MOTEID___ , ___Username___ ,
___Password___ , ...).

Debugging

CREW - FP7 - GA No. 258301 D3.1

 15

If you start writing your own visualiser or analyser XML configuration files, be sure to
activate the java console. This way you can see that queries the applet will execute and track
down errors if necessary.

How to enable java console in

• Ubuntu :
o Open a terminal and type : jcontrol
o Go to the advanced tab and expand the Java console item.
o Select Show console and click OK
o Restart your browser just to be sure the new settings are activated.

• Windows :
o Start > Control Panel > Search for Java
o Click the Java icon
o Go to the advanced tab and expand the Java console item.
o Select Show console and click OK
o Restart your browser just to be sure the new settings are activated.

iNode: use of embedded PC and Wi-Fi
iNode OS and software

• Debian 5.0.3 (Lenny) Voyage distro 0.6.2
• Patched kernel 2.6.24.7 for click
• Click modular router 1.7.0 with all elements available in user level and as kernel

module
• madwifi driver with the accompanying tools
• Time synchronization via ptpd IEEE 1588 standard

o Convergence (offset from master)
o < 100 us after ca. 8 min
o < 10 us after ca. 13 min

http://www.debian.org/
http://linux.voyage.hk/
http://www.kernel.org/
http://read.cs.ucla.edu/click/click
http://read.cs.ucla.edu/click/click
http://snapshots.madwifi-project.org/madwifi-0.9.4/
http://ptpd.sourceforge.net/

CREW - FP7 - GA No. 258301 D3.1

 15

The user can get acces to every node via ssh by configuring an iPlatform which can contain
bins, scripts, libs, configuration and an optional specific kernel and initrd. Once logged in via
sudo the user has unlimited access to the system. We discourage the use of 'apt-get install' and
'remountrw' as it can have a big impact on the maximum write cycles of the compact flash.
We prefer to prepare the bins, libs and confs in the iPlatform directory.
There is one special binairy with the name start_mount_script that will be invoked by the
linux rc.local (at the end of the linux boot proces) when it can find this file in the root of the
iPlatform mount. For every experiment the /tmp/log is mounted to ./log/ScheduleID/NodeID/
under iPlatform root directory on wilabfs via nfs. Also the user's home directory is available
on every inode.

At every time the user can power off and on again the inode as needed during the experiment
or during the debugging fase via the status tab on wilab.

Developer documentation
The original version of w-iLab.t was based on Motelab (http://motelab.eecs.harvard.edu/).
Over the years, the Motelab code was significantly extended (*). As major reconstructions of
the code are currently taking place, the source of w-iLab.t and the w-ilab.t tools source is
currently not publicly accessible. Please contact Bart.Jooris [AT] intec.ugent.be for more
information. We aim to make the new release of w-iLab.t fully open source. Please check
back here for updated information.

(*) Why w-iLab.t is not just a Motelab clone:

Motelab is a passive sensor lab where the DUTs are restricted to the Tmote Sky
(DUT=device_under_test).
w-iLab.t is an active wireless lab.

Passive versus active

http://wilab.atlantis.ugent.be/platforms-edit.php
http://wilab.atlantis.ugent.be/motes-status.php
http://motelab.eecs.harvard.edu/

CREW - FP7 - GA No. 258301 D3.1

 16

Active=interact on the Environment of the sensors

• Current measurement with sample rate up to 10kHz on all the DUTs
• Battery voltage can be adjusted at any time on all the DUTs (energy

harvesting)
• Audio can be injected and acquired into and from the DUTs using the

soundblaster of the iNode.
• Analogue and digital hardware events (like node reset) can be triggered on and

acquired from the DUTs.

All of this can be prepared before running an experiment or can be adjusted
real time during the experiment by using the scenarios tab.

Sensor lab versus wireless lab

• The embedded PC acting as intermediate node (iNode) between the control
server and sensor device can become an active member of the experiment
(kernel adj., drivers adj., click router code, java)

• w-iLab.t supports WiFi, sensor, cognitive,... (and not only sensor...)
experiments

• The lab can be extended with other wireless technologies (BT, IrDA, 3G,...)

FAQ
Before contacting us, please take the time to go through the FAQ list below. This list will be
updated frequently.

Q: What does the W-iLab.t testbed do? What does it measure?

A: The w-iLab.t is a heterogeneous, generic wireless testbed. Basically, the testbed "does
nothing" by itself, but can behave in lots of different ways, depending on how it is configured
by the user. The w-iLab.t hosts sensor hardware, embedded PCs, Wi-Fi interfaces, cognitive
radio platforms etc. The behavior is determined by selecting a subset of this hardware, and
installing the drivers/software/scripts of your choice. To get you started, there are default
configurations available; For example, when no experimenter is using the testbed, the sensor
nodes are programmed by us to continuously measure the temperature in their environment;
these measurements are stored in a database. Please check the tutorial section to get started
with some default images.

Q: To what extent can I change the application layer / routing protocol / MAC layer /
Physical layer / ... ?

A: The only things that are fixed in our testbed are the hardware components and their
interconnections. You can make full use of the hardware as if it would be located on your
desktop, but, obviously, you can not bypass the limitations of the testbed components. To be

CREW - FP7 - GA No. 258301 D3.1

 16

more precise, for the sensor nodes and Wi-Fi cards, it is impossible to make PHY layer
adjustments. MAC and higher layer modifications are supported, as long as you are able to
implement the changes yourself. As a simple example: if you e.g. are able to create a new
wireless Wi-Fi driver that allows you to change the output transmission power on a per
packet basis and this driver works together with the testbed hardware, you will be able to use
this driver on the testbed. To know whether our hardware supports your modifications, please
check the data sheets of our hardware.

Common data format
Many cognitive usage scenarios that take place can be 'recorded'. In our federation data
recorded in one testbed is usable in other testbeds to support emulated usage scenarios (e.g.
primary user data recorded in testbed A feeds into a sensing device in testbed B).

To this end, CREW defined data of interest, common structures for storing data and is in the
process of creating a federation database for storage of any collections made.

Preliminary information on this common data format can is available in this document.

Attachment Size
common-data-format.pdf 327.93 KB

http://www.crew-project.eu/sites/default/files/common-data-format.pdf
http://www.crew-project.eu/sites/default/files/common-data-format.pdf

CREW - FP7 - GA No. 258301 D3.1

 16

9 Appendix B: BEE2 example .json
{
 "Experiment Abstract" : {
 "Title" : "Transmitter calibration of the radio Front Ends for
BEE2",
 "Tag" : "2011-1-Chwalisz",
 "Authors" : [
 {
 "Name" : "Mikolaj Chwalisz",
 "Email" : "chwalisz@tkn.tu-berlin.de",
 "Address" : "Einsteinufer 25, 10587 Berlin, Germany",
 "Phone" : "+49 30314 23824"
 },
 {
 "Name" : "Daniel Willkomm",
 "Email" : "willkomm@tkn.tu-berlin.de",
 "Address" : "Einsteinufer 25, 10587 Berlin, Germany",
 "Phone" : "+49 3031421980"
 }
],
 "Release Date" : "2011-04-07",
 "Experiment summary" : "The calibration is a process aimed to give
a meaningful comparison between measurements made by one device, with known
magnitude and correctness, and a second device. This step is essential to
be able to compare results with other experiments, specially with custom
made devices. The other goal of the calibration is to determine the
condition of the instrument to perform measurements. This also includes the
ability to transfer defined measurement units.\nIn order to calibrate the
receiver, it is necessary to have a calibrated transmitter.\nIn this
experiment we try to calibrate BEE2 Front End as the transmitter based on
signal received by the R&S FSV Spectrum Analyzer",
 "Collection methodology" : "Devices where set to one frequency and
the power level of the generic OFDM was measured. Whole experiments were
done with cable connection. Transmitting device is set to one center
frequency",
 "Further documentation" : {
 "Description" : "The measurements where published in master
thesis of Mikołaj Chwalisz.",
 "Bibtex" : [
 "bibtexentry"
]
 },
 "Notes" : "none"
 },
 "Meta information" : {
 "Devices" : [
 {
 "Name" : "BEE2 Board",
 "Description" : "The Berkeley Emulation Engine 2 (BEE2) was
developed to be a reusable, modular, and scalable framework for designing
high-end reconfigurable computers at the Berkeley Wireless Research Center
(BWRC). It is supposed to help solving computationally intensive problems
such as: emulation and design of wireless communication systems, real-time
scientific computation, high-performance real-time digital signal
processing.",
 "Datasheets" : [
 "C. Chang, J. Wawrzynek, and R.W. Brodersen, BEE2: a
high-end reconfigurable computing system, Design Test of Computers, IEEE 22
(2005), no. 2, 114–125.",
 "http://bee2.eecs.berkeley.edu/wiki/BEE2wiki.html",

CREW - FP7 - GA No. 258301 D3.1

 16

 "http://bee2.eecs.berkeley.edu/"
],
 "Software" : {
 "Description" : "MSSGE (Matlab / Simulink / System
Generator / EDK) toolchain for FPGA designs. Used CASPER libraries and code
from BWRC (Berkeley).",
 "OperatingSystem" : "Linux BORPH",
 "Driver" : "none",
 "Application Name" : [
 "fpga1fe2011, ",
 "cntrlfpga2009"
],
 "Code" : "Ask authors."
 }
 },
 {
 "Name" : "Radio Front End",
 "Description" : "The Berkeley Emulation Engine 2 (BEE2) was
developed to be a reusable, modular, and scalable framework for desigThe
radio capabilities for BEE2 board in the CogRad testbed are provided by the
radio Front End. It is made of the baseband board performing data
processing, control and digital to analog conversion. The daughter card is
used to perform up/down signal conversion to 2.4 GHz.",
 "Datasheets" : [

"http://bwrc.eecs.berkeley.edu/Research/Cognitive/prototyping_platform.htm"
],
 "Software" : {
 "Description" : "MSSGE (Matlab / Simulink / System
Generator / EDK) toolchain for FPGA designs. Used CASPER libraries and code
from BWRC (Berkeley).",
 "OperatingSystem" : "none",
 "Driver" : "none",
 "Application Name" : "fe2011....",
 "Code" : "Ask authors."
 }
 },
 {
 "Name" : "RS FSV Spectrum Analyzer",
 "Description" : "OTS Spectrum Analyzer",
 "Datasheets" : [
 "http://www2.rohde-schwarz.com/file/FSV_dat-sw_en.pdf"
],
 "Software" : {
 "Description" : "NA",
 "OperatingSystem" : "NA",
 "Driver" : "NA",
 "Application Name" : "NA",
 "Code" : "NA"
 }
 }
],
 "Space" : {
 "Mobility" : "none",
 "Layout" : "Cable connection between devices."
 },
 "Time" : "Couple of seconds per measurement",
 "Signal generation" : {
 "Description" : "For signal generation the FE was used. One or
two OFDM symbols stored in FE's FPGA fabric and send repeatedly. Resulting

CREW - FP7 - GA No. 258301 D3.1

 16

in constant OFDM stream. Matlab file with I/Q samples is available as well
as the scripts to create it.",

 "Trace" : "OFDM generation Matlab code is available, contact
author."
 },
 "Radio Frequency" : {
 "Interference Sources" : " None, cable connection",
 "Operating Range" : "2.4 GHz ISM band, 2400 – 2483 MHz"
 },
 "Parameters" : [
 {
 "Description" : "Cable attenuation",
 "Name" : "Att",
 "Unit" : "dB"
 }
],
 "Trace Description" : {
 "Format" : "Text file with the following structure: \nParameter
listing:\nName; Value; (Unit)\nValues;Number of values; \nVector:
Frequency;dBm \nAdditional PNG file with spectrum analyzer screen shot",
 "Collected Metrics" : [
 {
 "Name" : "RFPower",
 "Unit of Measurements" : "dBm",
 "Accuracy" : "+-0.28dB"
 }
]
 }
 },
 "Experiment Iterations" : [
 {
 "Description" : "10dB Attenuator added into cable",
 "Time" : "2011-01-20T16:05+02:00",
 "Parameters" : [
 {
 "Name" : "Att",
 "Value" : 10
 }
],
 "Trace files" : [
 "fec_att10dB_count500_swt_ms_clrw.DAT",
 "fec_att10dB_count500_swt_ms_clrw.png"
]
 },
 {
 "Description" : "signal was averaged over 500 sweeps",
 "Time" : "2011-01-20T16:05+02:00",
 "Parameters" : [
 {
 "Name" : "Att",
 "Value" : 0
 }
],
 "Trace files" : [
 "fec_att0dB_count500_swt1.1ms_rbw100khz_avg.DAT",
 "fec_att0dB_count500_swt1.1ms_rbw100khz_avg.png"
]
 }
]
}

CREW - FP7 - GA No. 258301 D3.1

 16

10 Appendix C: Outdoor spectrum sensing with VSN

{
 "Experiment Abstract": {
 "Title": "Outdoor spectrum sensing with VSN",
 "UID": "2011-01-20T11:05+02:00::cfortuna::VSNMirenVarSweep",
 "Authors": [
 {
 "Name": "Carolina Fortuna",
 "Email": "carolina.fortuna@ijs.si",
 "Address": "Jamova 39, Ljubljana, Slovenia",
 "Phone": "+386 1 477 3114"
 },
 {
 "Name": "Zoltan Padrah",
 "Email": "zoltan.padrah@ijs.si",
 "Address": "Jamova 39, Ljubljana, Slovenia",
 "Phone": "+386 1 477 3114"
 },
 {
 "Name": "Marko Mihelin",
 "Email": "marko.mihelin@gmail.com",
 "Address": "Jamova 39, Ljubljana, Slovenia",
 "Phone": "+386 1 477 3114"
 }
],
 "Release Date": "2011-01-20T11:05+02:00",
 "Experiment summary": "Measurement of spectrum occupancy in a rural
area (Miren, Slovenia) using static low cost sensors called Versatile
Sensor Nodes. The measured spectrum will then be compared to the same
measurements performed using calibrated USRP. ",
 "Collection methodology": "Several sensors have been placed in
outdoor environment on a fixd frequency, no controled transmitters were
used - we just measure normal everyday power spectrum.",
 "Further documentation": {
 "Description": "Similar experiments were reported in ISABEL
2010 paper.",
 "Bibtex": [
 "bibtexentry"
]
 },
 "Notes": "http://sensorlab.ijs.si/publication/9/ism-bands-spectrum-
sensing-based-on-versatile-sensor-node-platform"
 },
 "Meta information": {
 "Devices": [
 {
 "Name": "VSN",
 "Description": "The JSI Versatile Sensor Node platform",
 "Datasheets": [
 "http://sensorlab.ijs.si/publication/9/ism-bands-
spectrum-sensing-based-on-versatile-sensor-node-platform",
 "http://xpack.ijs.si/svn/hardware/"
],
 "Data collection": "wireless",
 "Software": {
 "Description": "Codesourcery toolchain, STM and
Sensorlab libraries with Contiki.",
 "OperatingSystem": "Contiki",

CREW - FP7 - GA No. 258301 D3.1

 16

 "Driver": "custom",
 "Application Name": [
 "ssappv1.2"
],
 "Code": {
 "URL":
"http://xpack.ijs.si/svn/vsndrivers/trunk/VSNDrivers/",
 "RevisionNo": "435"
 }
 }
 },
 {
 "Name": "USRP N210",
 "Description": "USRP N210 connected to a PC used for data
processing and connectivity. The PC runs GNU radio which then runs the
application. For the RF front end we use a WBX daughterboard.",
 "Datasheets": [

"http://www.ettus.com/downloads/ettus_daughterboards.pdf"
],
 "Data collection": "local storage",
 "Software": {
 "Description": "NA",
 "OperatingSystem": "Linux on PC",
 "Driver": "UHD",
 "Application Name": [
 "usrpsa1.4",
 "GNU radio"
],
 "Code": "NA"
 }
 }
],
 "Location": {
 "Mobility": "none",
 "Layout": "http://xpack.ijs.si/Miren.kml",
 "GeoLoc":
"http://api.geonames.org/hierarchy?geonameId=3167024&username=sensors_ijs"
 },
 "Time": {
 "StartTime": "2011-01-20T06:05+02:00",
 "EndTime": "2011-01-20T11:05+02:00"
 },
 "Signal generation": {
 "Description": "No signal has been generated.",
 "Trace": "NA"
 },
 "Radio Frequency": {
 "Interference Sources": "None",
 "Operating Range": {
 "StartFrequency": "815",
 "StopFrequency": "950",
 "Unit of Measurement": "MHz"
 },
 "Parameters": [
 {
 "Description": "Bandwidth",
 "Name": "Bandwidth",
 "Unit": "Hz"
 }
],

CREW - FP7 - GA No. 258301 D3.1

 16

 "Trace Description": {
 "Description": "csv file for frequency values and csv file
for measured power.",
 "FileFormat": {
 "Header": "NA",
 "Collected Metrics": [
 {
 "Name": "Frequency",
 "Unit of Measurements": "Hz",
 "Accuracy": "+1Hz"
 },
 {
 "Name": "Power",
 "Unit of Measurement": "dB",
 "Accuracy": "+-0.28dB"
 }
]
 }
 }
 }
 },
 "Experiment Iterations": [
 {
 "Description": "sweep step 10MHz",
 "Time": {
 "StartTime": "2011-01-20T06:05+02:00",
 "EndTime": "2011-01-20T08:05+02:00"
 },
 "Parameters": [
 {
 "Name": "Frequency",
 "Value": 0.1
 }
],
 "Trace files": [
 "frequency2011-01-20T06:05iteration1.csv",
 "power2011-01-20T06:05iteration1.csv"
]
 },
 {
 "Description": "sweep step 20MHz",
 "Time": "2011-01-20T06:35+02:00",
 "Parameters": [
 {
 "Name": "Frequency",
 "Value": 0.2
 }
],
 "Trace files": [
 "frequency2011-01-20T06:35iter2.csv",
 "power2011-01-20T06:35iter2.csv"
]
 }
]
}

	1 Introduction
	1.1 Scope
	1.2 Document purpose and intended audience
	1.3 References and links to other workpackages and deliverables

	2 CREW federation implemented functionalities
	2.1 TCD Iris testbed supported functionalities
	2.1.1 Powering the USRPs
	2.1.2 VNC access

	2.2 TUB TWIST testbed supported functionalities
	2.2.1 TWIST sensornet testbed
	2.2.2 Mobile robot
	2.2.3 USB spectrum analyser framework
	2.2.4 BAN sensor nodes

	2.3 TUD LTE+ Testbed supported functionalities
	2.3.1 Uplink functionality
	2.3.2 Downlink functionality
	2.3.3 Signal measurement functionality

	2.4 IMEC sensing platform supported functionalities
	2.4.1 Integrating the sensing solution in the experimenter’s own testbed through the USB interface and use of the driver
	2.4.2 Leveraging on the integration of the sensing engine in CREW testbeds
	2.4.3 Reprogramming the sensing engine with specific functionality
	2.4.4 Making use of samples from the sensing engine to test algorithms
	2.4.5 Mixing and matching the hardware of the sensing engine with the experimenter’s own hardware components

	2.5 IBBT w-iLab.t testbed supported functionalities
	2.5.1 Install (custom) firmware, software, drivers, protocols on embedded PCs and sensor nodes
	2.5.2 Use of the cognitive radio platforms: USRP hardware with 2.4 GHz ISM front-end
	2.5.3 Use of the CREW benchmarking framework: reproducible environments and performance comparison
	2.5.4 Use of imec sensing agents

	2.6 THALES Multi-antenna LTE detection procedure
	2.6.1 Introduction
	2.6.2 Reference-based multi-antenna detection
	2.6.2.1 Mathematical notations and signal modeling
	2.6.2.2 Optimal spatial detector
	2.6.2.3 Asymptotic value of the criterion at the synchronization positions
	2.6.2.4 False alarm probability
	2.6.2.5 Application to LTE standard

	3 Common Data Collection/Storage Methodology Design
	3.1 Introduction
	3.2 Background on IEEE 1900.6
	3.3 Definition of the data of interest
	3.4 Examples
	3.4.1 BAN Example
	3.4.2 BEE2 Example
	3.4.3 Receiver calibration
	3.4.4 Dublin Sensing Experiment

	4 Common portal
	5 Testbeds components and combinations
	5.1 Mix and match components approach, the “virtual components”
	5.2 Component interfaces
	5.2.1 Transceiver Facility API
	5.2.1.1 Concept and approach
	5.2.1.2 Transceiver functionality
	5.2.1.3 Key concepts
	5.2.1.3.1 Up-Conversion and Down-Conversion
	5.2.1.3.2 Burst
	5.2.1.3.3 Baseband signal exchange
	5.2.1.3.4 Time management mechanisms

	5.2.1.4 Interfaces
	5.2.1.4.1 Interface methods
	5.2.1.4.2 Example use cases for Bursts Time Profile configuration

	5.2.2 IMEC interfaces

	5.3 Combined virtual components description
	5.3.1 LTE detector simulation environment
	5.3.1.1 Simulation environment
	5.3.1.2 Spatial propagation channel model

	5.3.2 Combining the imec spectrum sensing agent and the IBBT w-iLab.t
	5.3.2.1 Motivation
	5.3.2.2 Implementation and possibilities
	5.3.2.3 Additional possibilities and future work

	6 Conclusion
	7 References
	8 Appendix A: CREW Portal
	9 Appendix B: BEE2 example .json
	10 Appendix C: Outdoor spectrum sensing with VSN

