
CREW - FP7 - GA No. 258301 D3.2

 1

Cognitive Radio Experimentation World

Project Deliverable D3.2
Optimized operational federated platform

Contractual date of delivery:

Actual date of delivery:

Beneficiaries:

Lead beneficiary:

30-09-12

30-09-12

IBBT – IMEC – TCD – TUB – TUD – TCS – EADS – JSI

TCD

Authors: Danny Finn (TCD), Justin Tallon (TCD), Joao Paulo Cruz Lopes
Miranda (TCD), Luiz DaSilva (TCD), Stefan Bouckaert (IBBT),
Ingrid Moerman (IBBT), Christoph Heller (EADS), Somsaï Thao
(TCS), Alejandro Sanchez (TCS), David Depierre (TCS), Sofie
Pollin (IMEC), Peter VanWesemael (IMEC), Mattias Desmet
(IMEC), Jan Hauer (TUB), Mikolaj Chwalisz (TUB), Nicola
Michailow (TUD), Zoltan Padrah (JSI), Tomaž Šolc (JSI), Matevz
Vucnik (JSI), Mihael Mohorcic (JSI), Tomaz Javornik (JSI), Miha
Smolnikar (JSI)

Reviewers: Carolina Fortuna (JSI), Stefan Bouckaert (IBBT)

Workpackage:

Estimated person months:

Nature:

Dissemination level:

Version

WP3 – Creating the Federation

53

R

PU

1.0

Abstract: This public document gives a detailed description of the functionality of the optimised
operational federated platform. This platform will include a more advanced version of the PORTAL
and supports cross-country component combinations and advanced data collection. This deliverable
reports on the activities performed in all tasks of this work package.

Keywords: network testbeds, federation, wireless networks, cognitive radio, cognitive network,
functionalities, capabilities, components, combination, interface, data format, portal, guidelines.

CREW - FP7 - GA No. 258301 D3.2

 2

Executive Summary
This document provides a report on how well the CREW project has performed in the 4 core tasks of
WP3 “Creating the Federation”. These are Task 3.1 “Baseline Analysis and Federated Portal
Establishment”, Task 3.2 “Component Compatibility Analysis and Interface Design & Specification”,
Task 3.3 “Common Data Collection/Storage Methodology Design” and Task 3.4 “ Interoperability
Testing”. This document builds on the information provided in our previous document D3.1: “Basic
Operational platform” and provide up-to-date information on the capabilities and functionalities of the
CREW federated testbed. This document incorporates also the Logatec and Ljubljana testbeds as well
as the TCS multi-antenna LTE sensing platform which were not present in the D3.1; however,
discussion of the basic operational platform of the VENSA-based testbed (Logatec and Ljubljana) is
provided in D3.3.

We start by reporting, the status of each of the testbeds and platforms in terms of the federation
functionalities which they have implemented. The report demonstrates that the CREW federated
testbeds and platforms now have most, if not all, of CREW core functionalities implemented. These
include the sharing of baseline functionality information/testbed description, incorporation and sharing
of hardware (/software) between testbeds, advanced sensing functionality, use of the CREW common
data format, definition of benchmarked scenarios for each of the federation testbeds, the presence of
access and usage information on the CREW Portal, remote open access for experiments that are
performed in the context of the CREW project, and usage of the testbed/platform functionalities by
other CREW partners, external users and open call experimenters.

Within the last year, a number of testbed optimisations have taken place in order to provide these
CREW core functionalities as well as to enable additional others. In order to provide updated baseline
analysis a number of these optimisations to the testbed functionalities are discussed in this document.
Among these are:

• Increased testbed network sizes and ease of remote interaction (e.g. use of OMF (cOntrol and
Management Framework)) to accommodate more cognitive network based experiments,

• Additional spectrum licensing (TV band and LTE 2.1GHz band transmissions),
• Improvements to better facilitate mix and match testbed usage and benchmarked

experimentation.
• Additional spectrum sensing capabilities for a wider range of scenarios.
• Integration of hardware from other CREW partners into different testbeds, facilitating

nomadic use of testbed hardware and tools

This document introduces the CREW repository, for sharing of experimental data, scripts and with the
greater research community, in line with the common data collection and storage methodologies
outlined in the CREW project description of work, as well as the. The repository has been included
into as part of CREW Portal and will be used for sharing full experiment descriptions, traces,
background environments, processing scripts, performance metrics and benchmarking scores.

Within the last year it was decided that, as part of the optimisation process, the common data format
would move from a JSON specification, to one through XML. To facilitate this change an XML
common data format validation tool has been included on the CREW Portal which is also discussed
within this document.

Due to the extensiveness of the mix and match combination work performed as part of the
interoperability testing within the CREW project (all partners, including open call partners, having
taken part in combination experiments involving at least two other partners) we have included a table
(Table 4) summarising all of the combinations which have been performed. These are divided into
side-by-side combinations where recordings are performed in parallel on multiple devices and then
processed together to provide a combined solution, software combinations where software developed
in one testbed is used to operate hardware of another testbed, and hardware combination where a
hardware coupling of two components from different testbeds is performed to avail of the benefits
provided by each of the platforms individually. The table includes both intra-country and cross-
country component combinations.

CREW - FP7 - GA No. 258301 D3.2

 3

Detailed descriptions of the TCS Transceiver API is provided including set-up details, an architectural
overview and code breakdown, and interfacing details for the VESNA-based testbeds are provided
outlining how it can be controlled via an HTTP-like interface, a C interface or a custom firmware
image. This forms part of the interface design and specification work of CREW.

As a whole, this document details the way in which the CREW federation has changed from a
collection of island testbeds to a strongly interconnected federated platform which is capable of
facilitating complex networks, building on the strengths of each of the individual testbeds and
combining them to provide advanced federated experimental functionality.

CREW - FP7 - GA No. 258301 D3.2

 4

List of Acronyms and Abbreviations

3G Third Generation

ADC Analogue to Dgital Converter

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BEE2 Berkeley Emulation Engine 2

BTS Base Station Transceiver

CDF Common Data Format

ComReg Irish Commission for Communications Regulation

CR Cognitive Radio

CRC Cyclic Redundancy Check

CREW Cognitive Radio Experimentation World

Dx.x CREW Deliverable x.x

DAC Digital to Analogue Converter

DEM Digital Elevation map

DIFFS Digital Front-end For Sensing

DNS Domain Name System

DSF Debugger Services Framework

DVB-T Digital Video Broadcast Terrestrial

eNB Enhanced Node B

FDD Frequency Division Duplex

FFT Fast Fourier Transform

GRASS Geographical Resources Analysis Support System

GFMD Generalized Frequency Division Multiplexing

GPS Global Positioning System

GUI Graphical User Interface

HaLo Hardware-in-the-Loop

HTTP Hypertext Transfer Protocol

ID Identification

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

I/Q In-phase/Quadrature

IP Internet Protocol

ISM Industrial Scientific Medical

JSON JavaScript Object Notation

LSB Least Significant Bit

CREW - FP7 - GA No. 258301 D3.2

 5

LTE Long Term Evolution

MAC Medium Access Control

MSB Most Significant Bit

NFS Network File System

OFDM Orthogonal Frequency Division Multiplex

OMF cOntrol and Management Framework

OS Operating System

PC Personal Computer

PHY Physical Layer

PXE Pre-boot eXecution Environment

RC Resource Controller

RF Radio Frequency

REST REpresentational State Transfer

RFIC Radio Frequency Integrated Circuit

Rx Receive

SCALDIO Scalable Radio

SCPI Standard Commands Programmable Interface

SD Secure Digital

SDK Software Development Kit

SDR Software Defined Radio

SNC Sensor Node Core

SPI Serial Peripheral Interface bus

SSL Secure Sockets Layer

TCP Transfer Control Protocol

TDD Time Division Duplex

TKN Telecommunications Network Group at TU Berlin

TWIST TKN Wireless Indoor Sensor Network Testbed

Tx Transmit

UART Universal Asynchronous Receiver/Transmitter

UE User Equipment

UHF Ultra High Frequency

UL Up Link

URL Uniform Resource Locator

USx CREW Usage Scenario x

USB Universal Serial Bus

USRP Universal Software Radio Peripheral

VESNA VErsatile platform for Sensor Network Applications

CREW - FP7 - GA No. 258301 D3.2

 6

VNC Virtual Network Computing

VSN Virtual Sensor Network

WARP Wireless open Access Research Platform

WLAN Wireless Local Area Network

XCVR Transceiver

WPx CREW Work Package x

WSN Wireless Sensor Network

XML Extensible Markup Language

CREW - FP7 - GA No. 258301 D3.2

 7

Table of contents

1	 Introduction .. 10	
1.1	 Overview .. 10	
1.2	 Document Purpose and intended audience ... 12	
1.3	 References and other work package deliverables .. 12	

2	 CREW federation optimised functionalities ... 13	
2.1	 TCD Iris testbed optimised functionalities ... 14	

2.1.1	 Iris Testbed equipment ... 14	
2.1.2	 Test and Trial Licence .. 16	

2.2	 TUB testbed optimised functionalities ... 16	
2.2.1	 CREW Segment in the TUB Testbed ... 17	
2.2.2	 Extensions of the TWIST testbed ... 18	

2.3	 TUD LTE+ Testbed optimised functionalities .. 19	
2.3.1	 Spectrum License for 2.1 GHz Band .. 19	
2.3.2	 Secondary System Implementation on Signalion HaLo Platform .. 19	

2.4	 IMEC sensing platform optimised functionalities .. 21	
2.4.1	 FFT_SWEEP .. 21	
2.4.2	 WLAN_G ... 22	
2.4.3	 WLAN_A ... 22	
2.4.4	 ZIGBEE .. 22	
2.4.5	 DVB_T ... 23	
2.4.6	 ISM_POWER_DETECT .. 23	
2.4.7	 ADC_LOG1 ... 24	
2.4.8	 ADC_LOG2 ... 24	

2.5	 IBBT w-iLab.t testbed optimised functionalities .. 25	
2.5.1	 Zwijnaarde testbed ... 25	
2.5.2	 Extended and easier mix-and-match (1). .. 25	
2.5.3	 Extended and easier mix-and-match (2). .. 26	
2.5.4	 Improved benchmarking compatibility and transparency. ... 26	
2.5.5	 Improved information on the portal. .. 26	
2.5.6	 Nomadic use of testbed hardware and tools. .. 26	

2.6	 TCS Multi-antenna LTE detection platform .. 27	
2.6.1	 Hardware description ... 27	
2.6.2	 Brief software description .. 28	
2.6.3	 Multi-antenna LTE signal processing .. 31	

2.7	 JSI Outdoor VESNA based testbed supported functionalities ... 31	
2.7.1	 GRASS RaPlaT virtual experiment planning ... 33	
2.7.3	 Scheduler for LOG-a-TEC Testbed ... 39	

CREW - FP7 - GA No. 258301 D3.2

 8

3	 Common Data Collection/Storage Methodology Design 44	
3.1	 Public server concept for publishing experiment data .. 44	
3.2	 Experiment Description Validation ... 44	

3.2.1	 XML Instance Representation .. 46	
3.3	 CREW trace format .. 47	

4	 Common portal ... 49	
4.1	 Introductory comments on the portal ... 49	
4.2	 Updates to the portal ... 49	

4.2.1	 Addition of JSI sections. .. 49	
4.2.2	 Updates and extensions to the content. .. 49	
4.2.3	 The CREW repository. ... 49	

4.3	 Portal Statistics .. 49	

5	 Testbeds components and combinations ... 51	
5.1	 Mix and match ... 51	

5.1.1	 Year 2 mix and match combinations .. 52	
5.1.2	 Year 1 mix and match combinations .. 53	

5.2	 Transceiver API ... 54	
5.2.1	 Introduction .. 54	
5.2.2	 Set-up details .. 55	
5.2.3	 Overall architecture .. 56	
5.2.4	 System wide design decisions .. 58	
5.2.5	 Reference diagrams .. 62	
5.2.6	 Code breakdown ... 64	

5.3	 VESNA Interfaces ... 66	
5.3.1	 Overview .. 66	
5.3.2	 HTTP-like interface .. 67	
5.3.3	 C interface .. 72	
5.3.4	 Register level access ... 74	

6	 Conclusion .. 76	

7	 References .. 77	

Annex I.	 Getting the spectrum sensing hardware information from VESNA .. 79	

Annex II.	 VESNA spectrum sensing setup .. 81	

Annex III.	 Retrieving the spectrum sensing measurements from VESNA 83	

CREW - FP7 - GA No. 258301 D3.2

 9

Annex IV.	 VESNA Spectrum Sensing C API documentation 85	

Annex V.	 VESNA Signal Generation C API documentation 91	

CREW - FP7 - GA No. 258301 D3.2

 10

1 Introduction	

1.1 Overview	
This public document gives a detailed description of the functionality of the optimised operational
federated CREW platform and builds upon the descriptions given in D3.1: “Basic Operational
platform”. It reports on the activities performed in all tasks of work package 3 “Creating the
Federation”.

Error! Reference source not found. below summarises the current status of each of the CREW
testbeds and sensing platforms. The table can be interpreted as follows:

Baseline Analysis Provided indicates that either an on-site testbed demonstration and overview, or else
a detailed presentation and decription have been provided of the testbed to the other CREW partners
and also have been included in CREW deliverables D3.1, D3.2 and/or D3.3.

Hardware from other partners Incorporated into Testbed indicates where hardware from one
federation partner has been incorporated into one of the other federation testbeds and can be easily
used in experiments performed within that testbed. This also includes (although not specifically
hardware) the incorporation of Iris SDR node into other federation testbeds.

Advanced sensing functionality indicates that this equipment is flexible enough to accommodate a
wide range of advanced spectrum sensing algorithms and different frequency ranges.

Common data format indicates that experimental outputs from this testbed have been expressed in the
CREW common data format.

Benchmarking Framework indicates that benchmarked scenarios, following the CREW benchmarking
framework presented in D2.2 Section 3.5 have been defined for use in this testbed.

Portal indicates for each testbed whether it is currently present on the CREW portal.

Open Access indicates whether remote open access of this testbed is available for experiments that are
performed in the context of the CREW project. Testbeds and platforms, which are not open access
can, however, still be made available for specific experiments.

Used by CREW partners/ external users/ open call specifies by whom the testbed has been used in
experimentation to date. This is denoted as C if the testbed has been used by other CREW partners, E
if used by external users and OC1 if used by the participants of the first open call.

 Iris IBBT TWIST LTE-TUD VESNA IMEC TCS

API
TCS
multi-
antenna
senisng

EADS
airplane
cabin mock-
up

Baseline
Analysis
Provided

Yes Yes Yes Yes Yes Yes Yes Yes Yes

Hardware
/software from
other partners
Incorporated
into Testbed

X Yes Yes

(not
permanent)

Yes

(not
permanent)

X N/A N/A N/A N/A

Advanced
sensing
functionality

Yes Yes Yes Yes Yes Yes N/A Yes N/A

Common data
format

Yes Yes Yes X Yes Yes N/A Yes Yes

Benchmarking
Framework

Yes Yes Yes Yes Yes Yes (part
of IBBT

X X Yes

CREW - FP7 - GA No. 258301 D3.2

 11

w-iLab.t)

Portal Yes Yes Yes Yes Yes Yes Yes X X

Open Access Yes Yes Yes Yes Yes Yes
(through
IBBT w-
iLab.t)

Yes X X

Used by
CREW
partners/
external users/
open call

C,E,OC1 C,E,OC1 E, OC1 C,E C C,E,OC1 E,OC1 C C

Table 1: Federation status of testbeds and sensing platforms

As can be seen also from the table extensive development of the federation testbeds and has occurred
during the first two years of the project to the extent that almost all partners have either performed, or
else been involved in, each of the core CREW federation functionalities outlined in Table 1.

Within the last year the final steps of baseline analysis, to include testbed demonstrations and/or
detailed descriptions of device operation and interfacing, for each of the core federation partners, was
provided. These included site visits to the IMEC labs in Leuven, the EADS airplane mock-up
environment in Munich, the Ljubljana and Logatec testbeds in Slovenia, and presentations on the TCS
API and multi-antenna sensing platform. In each location visited on-site mix and match experiments
were performed as well as interoperability testing to allow external experimenters to quickly assess
feasibility of desired experiments. Further information of this is provided in Section 5.1.

In addition to baseline analysis information of the core partner experimental capabilities, baseline
analysis of each the open call partner capabilities were presented in the Munich plenary meeting.

In the third row of the table we see that there has been a number of hardware exchanges between
partners, which has resulted into full incorporation of that hardware into the other partner testbeds.
While a number of the partners here may not have received hardware, that does not mean that they
have not provided it, for example the IMEC sensing platform and Iris SDR nodes have both been
incorporated into the w-iLab.t testbeds in IBBT and can both be accessed and used in experiments
remotely via the w-iLab.t online interface. As a result of these hardware incorporations many testbeds,
which would previously not have been capable of advanced sensing functionality, now are.

Section 2 provides updated baseline functionality information for each of the testbeds and platforms,
as well as discussing hardware incorporations from one federated testbed to another, the benfits of
these incorporations and we also introduce the nomadic use setup for testbed hardware and tools.

As can also be seen in the table, the CREW common data format has been extensively used by the vast
majority of CREW partners, this in combination with the definitions of benchmark scenarios for each
of the CREW testbeds enables reproducibility and transferability of results within the CREW
federation.

Section 0 presents additions and changes to the CREW common data collection and storage
methodology. With the introduction of the CREW repository [1] CREW experimental data and
environment definition can now be shared easily, making use of the common data format. Within the
last year also the common data format has transitioned from JSON specification to XML in order to
improve ease of use. In order to facilitate this transition an XML common data format validation tool
has been included on the CREW portal, which is also discussed in Section 0.

Currently information on all of the open access testbeds and sensing platforms is available through the
CREW Portal, while information on the TCS multi- antenna sensing platform and the EADS airplane
cabin mock-up (which are not open access but may, however, still be made available for specific
experiments) are provided within this document and D6.2.

CREW - FP7 - GA No. 258301 D3.2

 12

Section 4 provides discussion of new additions to the common Portal made within the second year of
the project as well as a discussion of portal usage to date.

The final row of Table 1 demonstrates the extensiveness of the use of the CREW federated testbeds by
other CREW partners, external users and open call experimenters. Not shown in this table is how
different components and platforms were combined within collaborative experiments.

At the start of Section 5 Table 4 shows how combinations between the different platforms and testbeds
were performed, a list of the experiments performed and details on where to look for further
information on each is also provided. This makes up a large part of the interoperability testing of the
CREW project and demonstrates to external users examples of the large number of component
combination experiments made possible by the CREW federation. Also included in this section as part
of the interface design and specification work of CREW we provide detailed interface information for
both the VESNA outdoor testbeds and the TCS transceiver API, parts of which are included in
Annexes.

The document is then rounded up and concluded in Section 6.

1.2 Document	 Purpose	 and	 intended	 audience	
This document is intended to provide a main reference to anyone interested in the usage of the CREW
Federation, which is up to date at the end of year 2 of the CREW project. It should provide enough
information to clearly grasp the capabilities of the Federation in terms of available functionalities so a
potential external user may be able to make an assessment on the feasibility of the experiment he or
she could have in mind.

1.3 References	 and	 other	 work	 package	 deliverables	
This document builds upon, and ties in with, information provided in a number of previous documents.
The main one of these is D3.1: “Basic Operational platform”, for ease of reference the two documents
are structured in the same way.

CREW - FP7 - GA No. 258301 D3.2

 13

2 CREW	 federation	 optimised	 functionalities	
This section provides an updated baseline analysis of the new and optimised federation functionalities
of each of the CREW federation testbeds, as well as, the IMEC sensing platform and the TCS multi-
antenna LTE sensing platform. This document serves as an update on the information provided in
D3.1 and for this reason the details provided in D3.1 Section 2 are not repeated here, with the
exception of those that have changed..

Figure 1 shows the federation as it is currently, going into the second open call.

Figure 1: CREW federation at year 2 of the project

While in this figure the federated testbed is displayed as a number of separate islands, in reality strong
interconnection between the hardware, software and control of the testbeds has developed in the
course of the second year of the project.

The main additions include the incorporation of the Logatec and Ljubljana testbeds as well as the TCS
multi-antenna LTE sensing platform (currently in experimental use in the Dresden island). As is also
shown in the figure there have been numerous cases of hardware from one testbed being incorporated
into other testbeds, for example: the addition of Iris to both the Ghent and Berlin islands. All testbeds
are also currently connected through the CREW Portal [2] and access information for each is provided
there.

This section provides testbed-by-testbed descriptions of each of the new and optimised federation
functionalities.

CREW - FP7 - GA No. 258301 D3.2

 14

2.1 TCD	 Iris	 testbed	 optimised	 functionalities	

2.1.1 Iris	 Testbed	 equipment	
In order to enable more network oriented experimentation, the Iris testbed has expanded from 4 remote
access nodes to 8, as well as 2 local-only access nodes. The layout is shown in Figure 1.

As stated in D5.2 Section 2.3.2, the four new nodes are DELL T1500 desktops with Intel Xeon
3.4GHz Quad core processors, each equipped with a USRP N210. Each of these nodes is connected to
the gateway node in the same fashion as the previous nodes to allow remote access. As with the others,
the use of the nodes is managed by a calendar booking system. All machines in the testbed have been
updated and are now running Ubuntu 12.04. Each also has a separate Clonezilla installation for
reimaging and a grub option to restore the main partition from the master image on ctvr-gateway
(admin password needed).

CREW - FP7 - GA No. 258301 D3.2

 15

Figure 2: Testbed layout

Information on access to the testbeds is presented in D3.1 Section 2.1 as well as on the CREW Portal
[2].

A camera has been installed next to testbed node 05 which allows experimenters to see what’s going
on in the testbed at the time of the experiment. It can be viewed by connecting via VNC to node 05
and using Cheese Photo Booth as a viewer.

CREW - FP7 - GA No. 258301 D3.2

 16

2.1.2 Test	 and	 Trial	 Licence	
Currently we have a TV-band Test and Trial licence from the Irish telecommunications regulator
ComReg, starting on 10/08/2012 and valid for one year. The license is for 694-718 MHz, with channel
bandwidth of 4 MHz and maximum ERP of -10 dbW.

Additional licences can also be obtained if required.

In the testbed we also have a discone antenna for use in the TV bands of the following specifications:

Frequency range: RX band: 25-1300 MHz TX band (@ SWR <=2): 49.5-50.5, 120-180, 215-300,
415-465, 610-650, 710-1000, 1130-1300 MHz

Impedance: 50 Ohms

Radiation (H-plane): 360° omnidirectional

Materials: Stainless Steel, Nylon

Wind load / resistance: 66 N @ 150 Km/h / 130 Km/h

Wind surface: 0.04 m²

Polarization: linear vertical Gain: 0 dBd

Figure 3: Discone wideband antenna

In addition to this each of the testbed nodes can be temporarily equipped with an Ettus WBX
daughterboard [3] in order for TV-band Iris experiments to be performed.

2.2 TUB	 testbed	 optimised	 functionalities	 	
The TUB testbed is a mature infrastructure for experimenting with sensor networks and cognitive
radio equipment. It gives full flexibility in sensor node application programming. Until recently,
however, it was hard to add new, non-wireless sensor related hardware to the testbed infrastructure.
The CREW project has shown that it is necessary to add new functionalities as well as diverse
hardware in parallel to the existing TWIST testbed, for example; to extend the infrastructure with
further cognitive radio equipment and to enable the CREW mix and match concept (allowing
experimenters to bring their own hardware). Furthermore we identified the need to extend the existing
TWIST sensor network testbed by a mechanism that allows us to monitor the RF interference

CREW - FP7 - GA No. 258301 D3.2

 17

environment (and thus validate the experimental conditions) during or before an experiment. In the
following, we first describe the extension of the TUB testbed with new hardware components and
network infrastructure from the CREW project; afterwards we report on the extensions we made to the
existing TWIST sensor network testbed.

2.2.1 CREW	 Segment	 in	 the	 TUB	 Testbed	
In order to support the growing amount of new hardware used in the TUB testbed, we have added
additional network infrastructure and a gateway server, which is dedicated to further testbed
extensions. This solution is flexible enough to support any new network attached solution. The new
server is an access point to all new hardware and makes it easy to couple together with the existing
TWIST wireless sensor network testbed. An architectural overview of the extended infrastructure can
be seen in Figure 4.

Figure 4: The dedicated CREW server and subnet created during Year 2

To control the CREW segment of the TUB testbed a generic approach is very useful to provide
flexibility between the different infrastructures of certain testbeds within the federation. Such a control
framework is OMF (cOntrol and Management Framework[4][5]). It allows entities to control the
testbed, perform measurements and manage the results. OMF runs in a distributed manner across
multiple different components of the testbed. The current status of OMF at the TUB testbed is as
follows: the Aggregate Manager is installed at the CREW server and ready to run. Also an Experiment
Controller is provided by the server. At the moment the Experiment Controller cannot yet be used to
control the testbed, because of how the Resource Controller (RC) is typically used and that OMF
needs to install an image via PXE. But none of TUB testbed nodes are using a pure Linux OS, which
can be booted via PXE. The planned solution is to run the RC in a virtual machine or host which
controls the components via a wrapper interface (planned to be investigated within year 3).

To enable more advanced spectrum sensing experiments we have added both a high end Rohde &
Schwarz SMBV100A Signal Generator and an FSV Spectrum Analyzer. Both devices are attached to
the new network infrastructure and can be remotely controlled, either by their native remote desktop
connections or by scripts. Further integration of the scripts will allow usage of both of these devices to
act as nodes in the OMF experiment control framework. Attaching these devices to the network
enables us to relocate them, on demand, to anywhere in the building.

CREW - FP7 - GA No. 258301 D3.2

 18

In the following we give an overview of the hardware components that have been added to the CREW
segment and how they are supported by OMF.

Signal Generator: Here a wrapper is implemented between the Standard Commands for
Programmable Instruments (SCPI) interface and OMF. This wrapper is written in the programming
language ruby and is ready to run. For communication raw TCP is used. This code example shows the
main implementation of running an 802.11 waveform file in 2.484GHz for one second.

 smbv = RsSMBV.new(options[:host])
 smbv.connect
 smbv.command("*RST;")
 smbv.freq("2kk")
 smbv.freq("2.484GHz") #Channel 14
 smbv.command(":SOURce:POWer:LEVel:IMMediate:AMPLitude -5dBm")
 smbv.command("BB:ARB:WAV:SEL '/hdd/waveforms/802.11a.wv'")
 smbv.command("BB:ARB:WAV:DATA? \
'/hdd/waveforms/802.11a.wv','comment'")
 smbv.command(":BB:ARB:STATe on")
 smbv.command(":OUTP:STATe on")
 smbv.command(":OUTP:STATe?")
 sleep 1
 smbv.command(":OUTP:STATe off")
 smbv.command(":OUTP:STATe?")
 smbv.disconnect()

Spectrum Analyzer: Here a wrapper is implemented between the SCPI interface and OMF as well.
This wrapper is using the programming language ruby and is ready to run, too.

TWIST: As the TWIST testbeds contains embedded nodes (telosb) it is not possible to run controller
software directly on the nodes. An interface to access and control the nodes is implemented by the
REpresentational State Transfer (REST) API. To provide the bridge between OMF and TWIST a
wrapper interface between REST and OMF is needed.

BEE2: The BEE2 platform is attached to CREW server and can be accessed from there over native
interfaces. However, there are still problems with the configuration of the BEE2 hardware and until
these have been solved an integration into OMF is being deferred.

CORAL: The CORAL platform is in the process of integration. Its OpenWRT OS makes it a
candidate for implementation and controllability by OMF. An example implementation of running
OMF within OpenWRT is given in [6].

IMEC Sensing Agent: We have borrowed the IMEC Sensing Agent to integrate non-permanently it
into the TWIST extended infrastructure. The goal was to make the sensing agent hardware plug and
play device within the testbed. As the Imec Sensing Agent is already working at the IBBT testbed
further integration into the TWIST extended infrastructure will be based on the IBBT OMF
implementation. With the new CREW network infrastructure at TUB it is now possible to place new
devices anywhere in the building and connect them to the common control network. The building is an
office building where the testbed covers 3 floors with approximately 40 rooms. The recent extensions
of the CREW project now enable experimenters to place their equipment in any of the 40 rooms and
connect to the CREW infrastructure via Ethernet (each room has a dedicated CREW Ethernet
socket).This enables experimenters to easily access the measurement data and to control any
connected device remotely.

2.2.2 Extensions	 of	 the	 TWIST	 testbed	
During several experiments we had identified that it would be helpful to monitor the very crowded
2.4GHz ISM band during an experiment for uncontrolled RF interference. To this end we have added

CREW - FP7 - GA No. 258301 D3.2

 19

a set of commercial, low-cost USB spectrum analyzers WiSpy-2.4x to the TWIST. As explained in
Deliverable 4.2 the spectrum analyzers can be used before an experiment to check RF interference
conditions and decide if and where (what frequency range) to start the experiment; or during an
experiment to validate the experiment conditions (RF interference environment). To this end we have
connected WiSpy devices via the USB interface to the “supernodes” in the TWIST testbed. The
TWIST supernodes are network-attached storage devices that are already placed in every room of the
office building to provide access to the TWIST sensor nodes (reprogramming, interaction during
experiments over a serial channel). Therefore it was more convenient to add the WiSpy devices to the
existing TWIST infrastructure than to the new CREW segment described above. A WiSpy device
sweeps the spectrum starting at 2.4 to 2.5 GHz by increasing the center frequency of a radio receiver
by a given step size for a given number of times. The center frequency is held constant over a
configurable time interval. Filtering of the receivers output is done with an adjustable filter bandwidth.
This way the user obtains the signal power for individual frequency ranges with equal width. The
WiSpy is capable of sweeping a range with some thousand steps with a minimal step size of 23.5 kHz
and the filter bandwidth needs to have a minimal value of 53.6 kHz. The dwell time ranges from 10 µs
to 2.55 ms in increments of 10 µs.

The extension of the TWIST testbed required considerable software development efforts: first the
software component for accessing the WiSpy on the supernodes was developed. This component,
called “spectrumserver” adds the ability to set and read the parameters of a connected WiSpy and to
pass the retrieved spectrum sweeps on to the TWIST server as well. Spectrumserver consists of several
parts written in C++ of which the device driver, the control channel and the data channel are the most
important ones. Each of them is polled within a control loop and is continuously checked for errors.

Furthermore, the TWIST server was extended to interact with the spectrumserver processes running on
the suppernodes. The implementation of the new TraceServer involved introducing a new dump
manager which takes care of job instances which in turn handles the control routines for each
spectrumserver. All data is dumped into a NFS replicated directory to provide the web server with the
dump files. Finally, the user interface and webserver was extended, to incorporate the controls for
spectrum sensing and dump file retrieval. Users have the possibility to start tracing RF interference
measurements during an experiment and download the data (in a file) during or after the experiment
has finished. Note that since the CREW segment is co-located with TWIST (using the same rooms in
the same building) the WiSpy devices can naturally be used in experiments conducted on the CREW
segment as well. More information on the integration of the WiSpy devices is provided in Deliverable
D5.2.

2.3 TUD	 LTE+	 Testbed	 optimised	 functionalities	 	

2.3.1 Spectrum	 License	 for	 2.1	 GHz	 Band	
The LTE testbed at TUD has been upgraded with a new spectrum license in the 2.1 GHz band (1980
MHz to 2000 MHz and 2170 MHz to 2190 MHz). This step was necessary to ensure the continuous
operation of the LTE testbed when the spectrum license for 2.6 GHz is withdrawn due to commercial
use of the corresponding frequencies in Germany. Along with the license, several nodes have been
equipped with 2.1 GHz frontends. Note that only the RF parts have been replaced, while LTE eNB and
UE baseband processing remains unaffected due to the modular structure of the equipment. Further
note that as long as the 2.6 GHz license is not withdrawn, those frequencies are still available for
experimentation.

The operation of the new equipment has been successfully tested. The internal US5 experiment “LTE
Multi-Antenna Sensing” has been conducted in the 2.1 GHz frequency range.

2.3.2 Secondary	 System	 Implementation	 on	 Signalion	 HaLo	 Platform	
The Signalion Hardware-in-the-Loop (HaLo) is a platform designated to simplifying the transition
from simulation to implementation. To support cognitive radio setups that consider a

CREW - FP7 - GA No. 258301 D3.2

 20

primary/secondary user configuration, the LTE testbed has been extended by a HaLo node that can
take the role of the secondary user. On the HaLo device, a novel modulation scheme called
Generalized Frequency Division Multiplexing (GFDM) [7] is now available.

This enables experimenters to consider experiment setups in LTE testbed, where the LTE system can
act as a monitored primary system, while the GFDM system can run as an interfering secondary
system.

2.3.2.1 HaLo	 Concept	
The HaLo consists of a wireless transceiver that can operate in the 2.6 GHz frequency band. The
concept is such, that complex valued data samples are transmitted to the device’s memory via USB
from a control computer. The samples can be either read from a previously recorded file or generated
on the fly e.g. by a Matlab script. The signal is transmitted over the air and received in a similar way.
The device digitizes the signal and stores complex valued samples to an internal memory before they
are fed back via USB to the control computer.

Tx Rx
AD

C/
DA

C

USB

wireless
channel

HaLo control	 computer

Figure 5: The HaLo setup

Note that due to limitations in the HaLo’s internal memory real-time operation is not possible.

2.3.2.2 GFDM	 Theory	
The transmission scheme chosen to be implemented on the HaLo device to act as a secondary system
in the testbed is a novel, non-orthogonal and flexible modulation scheme called GFDM. The concept
is such that a multicarrier signal is transmitted, quite similar to the well know and established OFDM
scheme, however one of the differences is in the pulse shaping of the individual subcarriers. This step
allows shaping of transmissions and produces a signal with particularly low out-of-band radiation,
which is a very desirable property in cognitive radio. For further details please refer to [7].

...

digital
upconversion

transmit
filter

symbol
mapping

...

cyclic prefix

CPS
/P

 K

 K

up-
sampling

b

1d

Kd G

1w

d x... x D/A

upmixing

G

Kw

2 cj f te π

...

digital
downconversion

receive
filter

symbol
detection

...

de-prefix

-‐CP P
/S

 K

down-
sampling

1d̂

ˆ
KdG

1w

Kw

y

...

yA/D
G

 K

d̂ b̂

2 cj f te π−

FDE

equalization

y

CREW - FP7 - GA No. 258301 D3.2

 21

Figure 6: GFDM transmitter and receiver block diagram

2.4 IMEC	 sensing	 platform	 optimised	 functionalities	
In deliverable D3.1 a high-level overview was given on the IMEC sensing engine and the software
integration. A full description of the functions and implementation is out of the scope of this
document, however this information is available on the CREW portal [8]. An overview of the
configurations of the sensing platform is provided below, this describes the modes of operation
currently available with the sensing engine, which is integrated in the w-iLab.t of the IBBT in
Zwijnaarde (Belgium). Two variants of the IMEC sensing engine are available, both use the in house
developed DIFFS [9] chip, in one instance this is connected to the commercially available WARP
radio board [10] and the in the second instance connected to the in house developed SCALDIO2B
SDR RFIC [11].

Below is the list of available configurations of the sensing engine and the output of each:

2.4.1 FFT_SWEEP	
short description: sweep a part of the spectrum and perform an FFT calculation on each

subband. There are 291 subbands available for Scaldio2b, numbered from 1 to 291; there
are 28 subbands available for WARP, numbered from 1 to 28. Each subband is 20 MHz
wide, spread around the channel-frequency. ADC sampling speed is 40 MHz for both
Scaldio2b and WARP.

fe_gain: gain setting of the analog front-end; between 27 and 100 for Scaldio2b, between 5
and 100 for WARP (100 being maximum gain).

first_channel and last_channel: the first and last channel to sweep. Both must be integer
numbers and last_channel must always be bigger than or equal to first_channel.

 Scaldio2b: the channel-frequency equals 200 MHz + 20 MHz * (channel number-1).
Must be an integer number between 1 and 291.

 WARP: the channel-frequency equals
• 2.412 GHz + 20 MHz * (channel number - 1) for channel 1 to 4;
• 2.84 GHz for channel 5;
• 5.18 GHz + 20 MHz * (channel number - 6) for channel 6 to 13;
• 5.5 GHz + 20 MHz * (channel number - 14) for channel 14 to 24;
• 5.745 GHz + 20 MHz * (channel number - 25) for channel 25 to 28.

bandwidth: not applicable. Fixed at 10 MHz for Scaldio2b and 10.45 MHz for WARP.
fft_points: number of bins in the FFT-calculation. Must be 16, 32, 64 or 128. Currently only

128 supported.
dvb_nr_carriers: not applicable in this mode.
dvb_guard_interval: not applicable in this mode.
threshold_power: not applicable in this mode.
output: each sweep yields an array with the number of channels times the number of FFT-

points values. Every value is a logarithmic power value for the corresponding FFT-bin.
Note: take into account an 8 MHz overlap between channel 4 and 5 in case the WARP
analog FE is used.

CREW - FP7 - GA No. 258301 D3.2

 22

2.4.2 WLAN_G	
short description: determine the instantaneous power in a number of IEEE 802.11g channels.

There are 14 channels available, numbered from 1 to 14, following the IEEE 802.11g
standard. Each channel is 5 MHz wide, spread around the channel-frequency. ADC
sampling speed is 40 MHz for both Scaldio2b and WARP.

fe_gain: gain setting of the analog front-end; between 27 and 100 for Scaldio2b, between 5
and 100 for WARP (100 being maximum gain).

first_channel and last_channel: the first and last channel to take into account. Both must be
integer numbers and last_channel must always be bigger than or equal to first_channel.
The channel frequency equals 2.412 GHz + 5 MHz * (channel number - 1) for channel 1
to 13 and equals 2.484 GHz for channel 14.

bandwidth: not applicable. Fixed at 10 MHz for Scaldio2b and 10.45 MHz for WARP.
fft_points: not applicable in this mode.
dvb_nr_carriers: not applicable in this mode.
dvb_guard_interval: not applicable in this mode.
threshold_power: threshold to compare the instantaneous power to.
output: each run yields an array with the number of channels times two. Every first value is a

logarithmic power value for the corresponding channel; every second value is 0 in case
the power value is lower than the threshold or 1 otherwise.

2.4.3 WLAN_A	
short description: determine the instantaneous power in a number of IEEE 802.11a channels.

There are 23 channels available, numbered from 36 to 64 in steps of 4, from 100 to 140 in
steps of 4 and from 149 to 161 in steps of 4, following the IEEE 802.11a standard. Each
channel is 20 MHz wide, spread around the channel-frequency. ADC sampling speed is
40 MHz for both Scaldio2b and WARP.

fe_gain: gain setting of the analog front-end; between 27 and 100 for Scaldio2b, between 5
and 100 for WARP (100 being maximum gain).

first_channel and last_channel: the first and last channel to take into account. Both must be
integer numbers and last_channel must always be bigger than or equal to first_channel.
The channel frequency equals 5 GHz + 5 MHz * channel number.

bandwidth: not applicable. Fixed at 10 MHz for Scaldio2b and 10.45 MHz for WARP.
fft_points: not applicable in this mode.
dvb_nr_carriers: not applicable in this mode.
dvb_guard_interval: not applicable in this mode.
threshold_power: threshold to compare the instantaneous power to.
output: each run yields an array with the number of channels times two. Every first value is a

logarithmic power value for the corresponding channel; every second value is 0 in case
the power value is lower than the threshold or 1 otherwise.

2.4.4 ZIGBEE	
short description: determine the instantaneous power in a number of IEEE 802.15.4 Zigbee

channels. There are 16 channels available, numbered from 11 to 26, following the

CREW - FP7 - GA No. 258301 D3.2

 23

IEEE 802.15.4 standard. Each channel is 2 MHz wide, spread around the channel-
frequency. ADC sampling speed is 40 MHz for both Scaldio2b and WARP.

fe_gain: gain setting of the analog front-end; between 27 and 100 for Scaldio2b, between 5
and 100 for WARP (100 being maximum gain).

first_channel and last_channel: the first and last channel to take into account. Both must be
integer numbers and last_channel must always be bigger than or equal to first_channel.
The channel frequency equals 2.35 GHz + 5 MHz * channel number.

bandwidth: not applicable. Fixed at 10 MHz for Scaldio2b and automatically calculated for
WARP.

fft_points: not applicable in this mode.
dvb_nr_carriers: not applicable in this mode.
dvb_guard_interval: not applicable in this mode.
threshold_power: threshold to compare the instantaneous power to.
output: each run yields an array with the number of channels times two. Every first value is a

logarithmic power value for the corresponding channel; every second value is 0 in case
the power value is lower than the threshold or 1 otherwise.

2.4.5 DVB_T	
short description: cyclostationary detection for channels of the DVB-T standard. There are 51

channels available, numbered from 16 to 66. Each channel is 8 MHz wide, spread around
the channel-frequency. ADC sampling speed is 40 MHz for Scaldio2b. This mode is not
available for WARP front-ends.

fe_gain: gain setting of the analog front-end; between 27 and 100 (100 being maximum gain).
first_channel and last_channel: the first and last channel to take into account. Both must be

integer numbers and last_channel must always be bigger than or equal to first_channel.
The channel frequency equals 434 MHz + 8 MHz * (channel number - 16).

bandwidth: not applicable. Fixed at 10 MHz.
fft_points: not applicable in this mode.
dvb_nr_carriers: the number of carriers per symbol. Set to 2048 for 2k mode or 8192 for 8k

mode.
dvb_guard_interval: portion of the symbol that is copied in front of the signal, in order to

create a cyclic signal and hence avoid ISI. Floating point value which must be set to 1/4,
1/8, 1/16 or 1/32.

threshold_power: threshold to compare the instantaneous power to.
output: each run yields an array with the number of channels times two. Every first value is a

qualifier for the cyclostationary property of the received signal for the corresponding
channel; every second value is 0 if the first value is lower than the threshold or 1
otherwise.

2.4.6 ISM_POWER_DETECT	
short description: determine the instantaneous power in a number of ISM band channels.

There are 89 channels available, numbered from 1 to 89. Each channel is 2 or 4 MHz
wide, spread around the channel-frequency. ADC sampling speed is 40 MHz for both
Scaldio2b and WARP.

CREW - FP7 - GA No. 258301 D3.2

 24

fe_gain: gain setting of the analog front-end; between 27 and 100 for Scaldio2b, between 5
and 100 for WARP (100 being maximum gain).

first_channel and last_channel: the first and last channel must be integer numbers and
last_channel must always be equal to first_channel. The channel frequency equals
2.404 GHz + 1 MHz * (channel number - 1).

bandwidth: 1 MHz or 2 MHz, depending on the width of the channel. Enter a value in Hz.
fft_points: not applicable in this mode.
dvb_nr_carriers: not applicable in this mode.
dvb_guard_interval: not applicable in this mode.
threshold_power: threshold to compare the instantaneous power to.
output: each run yields an array with the number of channels times two. Every first value is a

logarithmic power value for the corresponding channel; every second value is 0 in case
the power value is lower than the threshold or 1 otherwise.

2.4.7 ADC_LOG1	
short description: log the time-domain samples coming out of the ADC of Scaldio2b. There

are 901 channels available, numbered from 1 to 901, which correspond to every possible
Scaldio2b carrier frequency.

fe_gain: gain setting of the analog front-end; between 27 and 100 for Scaldio2b (100 being
maximum gain).

first_channel and last_channel: the first and last channel to take into account. Both must be
integer numbers and last_channel must always be bigger than or equal to first_channel.
The channel frequency equals
• 93.75 MHz + 625 kHz * (channel number - 1) for channel 1 to 151;
• 187.5 MHz + 1.25 MHz * (channel number - 151) for channel 151 to 301;
• 375 Hz + 2.5 MHz * (channel number - 301) for channel 301 to 451;
• 750 MHz + 5 MHz * (channel number - 451) for channel 451 to 601;
• 1.5 GHz + 10 MHz * (channel number - 601) for channel 601 to 751;
• 3 GHz + 20 MHz * (channel number - 751) for channel 751 to 901;

bandwidth: not applicable. Fixed at 10 MHz.
fft_points: not applicable in this mode.
dvb_nr_carriers: not applicable in this mode.
dvb_guard_interval: not applicable in this mode.
threshold_power: not applicable in this mode.
output: each run yields an array of samples with the number of channels times two times 1023

floats. Every first value is the real part of the sample, every second value the imaginary
part. Only the number of samples indicated by the function call that fetches the result is
valid.

2.4.8 ADC_LOG2	
short description: log the time-domain samples coming out of the ADC of WARP. There are

37 channels available, numbered from 1 to 37, which correspond to every possible
WARP carrier frequency.

CREW - FP7 - GA No. 258301 D3.2

 25

fe_gain: gain setting of the analog front-end; between 5 and 100 for WARP (100 being
maximum gain).

first_channel and last_channel: the first and last channel to take into account. Both must be
integer numbers and last_channel must always be bigger than or equal to first_channel.
The channel frequency equals
• 2.412 GHz + 5 MHz * (channel number - 1) for channel 1 to 13;
• 2.484 GHz for channel 14;
• 5.18 GHz + 20 MHz * (channel number - 15) for channel 15 to 22;
• 5.5 GHz + 20 MHz * (channel number - 23) for channel 23 to 33;
• 5.745 GHz + 20 MHz * (channel number - 34) for channel 34 to 37;

bandwidth: selectable from following values: 6.75 MHz, 7.125 MHz, 7.5 MHz, 7.875 MHz,
8.25 MHz, 8.55 MHz, 9.025 MHz, 9.5 MHz, 9.975 MHz, 10.45 MHz, 12.6 MHz,
13.3 MHz, 14 MHz, 14.7 MHz, 15.4 MHz, 16.2 MHz, 17.1 MHz, 18 MHz, 18.9 MHz
and 19.8 MHz. Enter a value in Hz.

fft_points: not applicable in this mode.
dvb_nr_carriers: not applicable in this mode.
dvb_guard_interval: not applicable in this mode.
threshold_power: not applicable in this mode.
output: each run yields an array of samples with the number of channels times two times

24575 floats. Every first value is the real part of the sample, every second value the
imaginary part. Only the number of samples indicated by the function call that fetches the
result is valid.

2.5 IBBT	 w-‐iLab.t	 testbed	 optimised	 functionalities	 	
In deliverable D3.1, it was reported that an extension to the w-iLab.t facilities was being set up in
Zwijnaarde (Belgium), a town not far from the initial w-iLab.t deployment which is located in an
office building in Ghent, Belgium. In the meantime, this extension to w-iLab.t became operational
and is known under the name “w-iLab.t Zwijnaarde”. The w-iLab.t Zwijnaarde testbed is located on
top of a clean room, in an unmanned utility room.

2.5.1 Zwijnaarde	 testbed	
Although it should be noted that the CREW project is certainly not the only reason for which the
extension to the testbed was made, and that the work involved in setting up the foundations of this new
testbed location is also not a CREW effort, there are several clear CREW accents and CREW efforts in
the Zwijnaarde testbed; While also true for wireless experiments in general, when performing
cognitive radio and cognitive networking experiments, the amount of (uncontrollable) external
interference caused by wireless transmitters external to the experiment, should be as low as possible.
In w-iLab.t Zwijnaarde, the amount of external interference is kept at a minimum for two reasons:
the absence of people and the application of a copper shielding foil on ducts that go to those parts of
the building where there might be wireless activity because of human activities.

2.5.2 Extended	 and	 easier	 mix-‐and-‐match	 (1).	 	
Deliverable D3.1 already discussed the possibility of installing the IRIS software platform on USRP
hardware located in w-iLab.t. During the second year of CREW, the IRIS platform was often used on
top of the w-iLab.t USRP hardware, either to generate interference, or to scan the spectrum during
experiments. To make it also simple for end- users to use the IRIS platform remotely in the w-iLab.t

CREW - FP7 - GA No. 258301 D3.2

 26

Zwijnaarde, a server image was made available to experimenters, already containing an installation of
IRIS. Additionally, the use of the USRPs with IRIS was documented on the CREW portal [12]. An
example IRIS configuration, configuring the USRPs as spectrum analyser, is made available on the w-
iLab.t servers. Note that the use of IRIS is not compulsory: the experimenters may also decide to opt
for other frameworks, such as GNU radio.

2.5.3 Extended	 and	 easier	 mix-‐and-‐match	 (2).	 	
In addition, the integration of the IMEC spectrum sensing agents in the w-iLab.t Zwijnaarde was
improved and remote interaction was simplified. Details are available on the CREW portal.

2.5.4 Improved	 benchmarking	 compatibility	 and	 transparency.	 	
Mainly in the scope of the OpenLAB project (www.ict-openlab.eu/), the choice was made to operate
the w-iLab.t Zwijnaarde testbed using the OMF tools [4], [5], that seem to become the de-facto
standard for experiment control in testbeds worldwide. As the benchmarking framework
implementation for the w-iLab.t was being reworked (see deliverable D4.2) to make it less testbed
dependent and more transparent to the user, the benchmarking framework was now also rewritten
using OMF APIs. As a result, using the benchmarking framework has become more user-friendly.
Additionally, several w-iLab.t “interference background environments” were uploaded to the CREW
repository (see Section 4), which is part of the CREW portal. These environments can be reused
and/or modified by experimenters.

2.5.5 Improved	 information	 on	 the	 portal.	 	 	
After the initial deployment of the CREW portal in the first year of CREW, the portal has proven to be
a very useful source of information, both for existing w-iLab.t users and for new experimenters. To
guarantee the continued relevance of the CREW portal, the w-iLab.t content on the CREW portal was
updated and extended several times.

2.5.6 Nomadic	 use	 of	 testbed	 hardware	 and	 tools.	 	
In order to acquire measurements and generate interference in an easy and controlled way outside the
IBBT testbed environment, a nomadic w-iLab.t testbed set-up was constructed and used during a
common CREW measurement session in an airplane mock-up at EADS. The mobile testbed set-up
consists of a small form factor PC (as also used in the w-iLab.t Zwijnaarde testbed environment)
containing a minimum set of testbed management tools, together with a number of Ethernet-connected
embedded PCs (of the type used in the w-iLab.t Office testbed), which serve as proxy devices to
which different sensing devices can be collected. Figure 7 shows such proxy embedded PC (left),
which is used as a platform to gather timestamped measurements from the IMEC sensing agent
(center) and a TelosB sensor node (right, labelled ‘R6’).

Figure 7: Mobile testbed set-up as used during the EADS plenary meeting

CREW - FP7 - GA No. 258301 D3.2

 27

As indicated in the introduction of this section, please note that the above information only indicates
the changes to the testbed functionality, compared to D3.1. For a full overview of functionalities, the
reader can consult CREW deliverable D3.1, or the CREW portal at http://www.crew-
project.eu/portal/wilabdoc.

2.6 TCS	 Multi-‐antenna	 LTE	 detection	 platform	

2.6.1 Hardware	 description	

2.6.1.1 Overall	 description	
The multi-antenna LTE sensing platform allows us to acquire LTE (I, Q) data and to process using
advanced antenna processing algorithms. As described in Figure 8, the multi-antenna platform is made
of:

• A set of 4 antennas,
• A 4-channel receiver,
• A 4-channel acquisition board,
• A GPS system for positioning,
• A laptop for data storage and off-line multi-antenna LTE signal processing.

Multi-channel receiver

SM
A

SM
A

SM
A

SM
A

SM
A

SM
A

SM
A

SM
A

RF signal 1

RF signal 2

RF signal 3

RF signal 4

Multi-channel acquisition
boardSM

B
SM

B
SM

B
SM

B

PC
M

C
IA

FI signal 1

FI signal 2

FI signal 3

FI signal 4

Laptop

USBUSB

Frequency and gain command

PC
M

C
IA

Digitized
samples

RS232

GPS
coordinates

Hard
disk

LTE
Signal

processing

LTE GUI

Bloc
developped in

CREW
Figure 8: Multi-antenna sensing platform block diagram

A picture of the platform can be seen in Figure 9Error! Reference source not found..

CREW - FP7 - GA No. 258301 D3.2

 28

Figure 9: Multi-antenna sensing platform

2.6.1.2 Multi-‐channel	 receiver	
The main characteristics of the multi-channel receiver are summarized in Table 2.

Table 2 : Multi-channel receiver main characteristics

Frequency bands 1920-1980 MHz / 2110-2170 MHz

Bandwidth 5 MHz

Output intermediate frequency 19.2 MHz

Noise factor (at maximal gain) <7 dB

Rx gain 0 to 30dB (1 dB step)

Frequency step 200 kHz

Number of Rx channels 4

Gain dispersion <1 dB

Phase dispersion <6°

Frequency stability <10-7

Selectivity at ±5 MHz >50 dB

2.6.1.3 Multi-‐channel	 acquisition	 board	
The main characteristics of the multi-channel acquisition are summarized in Table 3.

Table 3 : Multi-channel acquisition board main characteristics

Resolution 12 bit

Internal quartz clock 15.36 MHz

Number of channels 4

-3 dB bandwidth >25 MHz

Memory
8MSamples

(i.e. 2MSamples per channel)

The four channels of the acquisition board are synchronized.

2.6.2 Brief	 software	 description	
SMARTAIR 3G TCS software was extended to take into the LTE mode. It has three main operating
modes:

• Antenna mode
• Replay mode
• Analysis mode

 Antenna mode enables display and acquisition of the signals present on the antennas.

 Replay mode enables off-line display of signals previously acquired on antennas.

 Analysis mode enables display of results obtained from interference analysis.

CREW - FP7 - GA No. 258301 D3.2

 29

2.6.2.1 Antenna	 mode	
A screenshot of the antenna mode can be seen in. This mode enables display and acquisition of the
signals present on the antennas. It includes the following functionalities:

• The Spectral view window displays in real-time of the spectral signal received on each
antenna.

• The Temporal view window displays in real-time of the temporal signal received on each
antenna.

• The Signal file view window displays the list of the acquired files.
• The Receiver control toolbar allows the control of the frequency and the gain of the receiver
• The Acquisition and analysis toolbar allows acquiring and/or saving and/or analyzing of the

received signal.

Spectral view

Temporal view

Signal file
view

Receiver
control

Acquisition
and analysis

Figure 10 : Antenna mode screenshot

2.6.2.2 Replay	 mode	
A screenshot of the antenna mode can be seen in Figure 11. This mode enables off-line display of
previously acquired signals. It includes the following functionalities:

• The Spectral view window displays the spectral signal received on each antenna of a
previously saved file.

• The Temporal view window displays the temporal signal received on each antenna of a
previously saved file.

• The Signal file view window displays the list of the acquired signal files.
• The Control window allows moving into the file.

CREW - FP7 - GA No. 258301 D3.2

 30

	

Spectral view

Temporal view
Signal file

view

Control

Figure 11 : Replay mode screenshot

2.6.2.3 Analysis	 mode	
A screenshot of the analysis mode can be seen in Figure 12. This mode is used to display results
obtained from interference analysis. It includes the following functionalities:

• The Signal file view window displays the list of the acquired signal files.
• The Report file view window displays the list of the report files from previous analysis.
• The Analysis result view window displays the list of the detected BTS with their

characteristics (Cell ID, duplex mode, cyclic prefix length, frame position, level in dBm).
• The Synchronization criterion view window displays the primary synchronization criterion for

the three possible sequences (one color per sequence).

The LTE multi-antenna processing is described in section 2.6.3.

CREW - FP7 - GA No. 258301 D3.2

 31

Signal file
view

Report file
view

Analysis result
view

Synchronization
criterion view

Figure 12 : Analysis mode screenshot

2.6.3 Multi-‐antenna	 LTE	 signal	 processing	
The multi-antenna LTE detection procedure is described in D3.1. It is integrated in the SMARTAIR
3G software and can be run off-line on previously acquired signals, in the analysis mode.

This procedure allows detecting all the LTE BTS emitting on a frequency channel. It is made of two
steps, the primary synchronization and the secondary synchronization. At the end of these two steps,
for each detected BTS, the following information is known:

• The frame synchronization position
• The duplex mode (FDD or TDD)
• The length of the cyclic prefix (Normal or extended)
• The physical layer identity

The performance of this detection is described in D6.1 for two CREW usage scenarios (US1 and
US5). In this deliverable the performance was presented only for the first part of the detection
procedure that is the primary synchronization. Since then, additional simulations were run in order to
evaluate the overall detection performance. This global performance is exactly the same as for primary
synchronization only. It is due to the fact that the length, the periodicity and the autocorrelation
properties of the secondary synchronization sequences are the same as the ones of the primary
synchronization sequences.

Moreover, the level in dBm of the detected BTS is also estimated from the channel impulse response
estimates.

2.7 JSI	 Outdoor	 VESNA	 based	 testbed	 supported	 functionalities	
The JSI outdoor testbed LOG-a-TEC is based on a custom-developed low-cost Wireless Sensor
Network (WSN) platform VESNA supporting spectrum sensing in UHF bands and spectrum sensing
plus transmission in ISM band, complemented with USRP software radios, and was introduced in
CREW deliverable D2.4, Section 3.1.

CREW - FP7 - GA No. 258301 D3.2

 32

The core of the LOG-a-TEC testbed consists of 50 VESNA sensor nodes mounted on public lighting
infrastructure in the city of Logatec in two distinct clusters and 10 VESNA sensor nodes deployed in
the JSI campus indoor testbed. Sensor nodes are connected to the gateway sensor node via a ZigBee
network, and then connected via Internet to the server hosted at JSI. The hardware setup of VESNA-
ased testbeds is depicted in Figure 13 and is based on a mix of nodes capable of spectrum sensing in
UHF, ISM 868 MHz and ISM 2.4 GHz bands, each equipped with a 2GB microSD card for storing
predefined measurement configurations as well as measurement results. Each node is directly
accessibile via web server with custom java application.

Figure 13 : Overview of hardware available to experimenters in the VESNA-based testbeds

CREW - FP7 - GA No. 258301 D3.2

 33

An overview of the functionalities of VESNA-based testbeds is depicted in Figure 14. The baseline
functionality and its integration with the CREW federated platform were described in CREW
deliverable D3.3, which amends the deliverable D3.1, while in the following we describe the
additional functionalities supporting planning, simulation and scheduling of experiments.

Figure 14 : Overview of the VESNA-based testbeds functionality

As depicted in Figure 14 the default central point of access to the VESNA-based testbed is a LOG-a-
TEC portal hosting a web based Graphical User Interface (GUI), and allowing access to (i) the
scheduler responsible for reserving testbed resources for consecutive execution of experiments, (ii) the
GRASS-RaPlaT for virtual experiment planning and simulation, and (iii) the sensor network via an
HTTP-like protocol and SSL servers using GET and POST requests. For advanced users the
experiment can also be configured and controlled directly, for which, a library of Python scripts are
provided.

2.7.1 GRASS	 RaPlaT	 virtual	 experiment	 planning	
The role of the GRASS-RaPlaT in LOG-a-TEC testbed is (i) to provide the virtual experiment
planning via simulation in order to ascertain the best setup before the actual execution in the testbed as
well as (ii) to support the postprocessing and visualization of experimentation results. No direct access
to GRASS-RaPlaT or the data storage/database is implemented or planned. An experiment is
configured via a web interface and the results of the experiment are also accessible via the web
interface. GRASS-RaPlaT is installed on the same computer as a web server, which simplifies their
interworking. A web server requests the required computation (e.g. radio coverage computation) by
simply issuing a Linux command with corresponding parameters (an example of coverage
computation is given below). This command, which is actually a script (Bash or Phyton), establishes

CREW - FP7 - GA No. 258301 D3.2

 34

the necessary GRASS environment and executes callbacks of GRASS-RaPlaT or other commands.
The GRASS-RaPlaT allows to configure the nodes of an experiment either as a transmitters or
receivers. If a particular node is not configured as transmitter or receiver, it is assumed as non-active
for the experiment. The main variable parameters for the transmitter are transmission power and
frequency, though the tool also allows to vary other parameters such as antenna tilt, azimuth or
antenna radiation pattern.

If a number of web users want to use GRASS service at the same time, the web server manages a
waiting queue and issues individual GRASS requests in sequence.

The described single-server approach in no way limits the possibility of moving GRASS-RaPlaT to a
separate machine in the future if so required. In such a case, suitable inter-machine communication
mechanisms should be established for remote command execution and data (file) access.

In the following a set of virtual experiments supported by GRASS-RaPlaT are briefly defined.

2.7.1.1 Transmission	 radio	 coverage	 estimation	
By this virtual experiment, with the flow diagram depicted in Figure 15, the radio coverage of the
specified node is calculated.

User input parameters are:

• The set of nodes involved in the experiment,
• The transmit power in dBm,
• The carrier frequency in MHz,
• The receiver sensitivity or the interference threshold level in dBm.

The virtual experiment output is:

• Map of signal level in dBm.

User	 inputs:
-‐	 node

-‐Tx	 power
-‐	 Tx	 frequency	

St
ar
t

Grass	 RaPlat	 Process

Static	 node	
parameters

(defined	 by	 node	
implementation)

Map	 of	 signal	 level

St
op

Figure 15 : Flow diagram for radio coverage estimation

2.7.1.2 Transmission	 range	 (interference	 area)	 of	 the	 nodes	
By this virtual experiment, the interference area of the selected node is calculated, as graphically
shown in Figure 16.

User input parameters are:

• The set of nodes involved in the experiment,
• The transmit power in dBm,
• The carrier frequency in MHz,

CREW - FP7 - GA No. 258301 D3.2

 35

• The receiver sensitivity or the interference threshold level in dBm.

The virtual experiment output is:

• The map with transmission range (interference area) of nodes.

User	 inputs:
-‐	 node

-‐	 Tx	 power	
-‐	 Tx	 frequency
-‐	 Rx	 sensitivity

St
ar
t

Grass	 RaPlat	 Process

Static	 node	
parameters

(defined	 by	 node	
implementation)

Node	 range,	
Interference	 area St

op

Figure 16 : Flow diagram for transmission range (interference area) of the nodes

2.7.1.3 Estimation	 of	 the	 signal	 level	 at	 the	 specified	 receiver	 locations	 for	 all	 active	 transmitters	
The aim of this virtual experiment with flow diagram given in Figure 17 is to find signal levels of all
active transmitters at the point of nodes specified as receivers and find the best server, i.e. transmitter
with the highest signal level.

User input parameters are:

• The set of involved in the experiment and their transmit powers in dBm.
• The set of receiver locations,
• The carrier frequency in MHz.

The virtual experiment output is:

• The signal levels of all active transmitters in specified receiver locations.

User	 inputs:
-‐	 Tx	 frequency

-‐	 Set	 of	
{Tx	 nodes	 with	
transmit	 power},	
{Rx	 locations}

St
ar
t

Grass	 RaPlat	 Process

Static	 node	
parameters

(defined	 by	 node	
implementation)

signal	 levels	 of	 all	
active	 Txs	 in	 specified	

Rx	 locations St
op

Figure 17 : Flow diagram for estimation of signal level at receiver positions for all active
transmitters

2.7.1.4 Estimation	 of	 the	 coverage	 area	 of	 all	 active	 transmitters	
The aim of this virtual experiment is to show the coverage area of the testbed. The flow diagram of the
experiment is shown in Figure 18.

CREW - FP7 - GA No. 258301 D3.2

 36

User input parameters are:

• The set of nodes involved in the experiment and their transmit powers in dBm,
• The carrier frequency in MHz.

The virtual experiment output is:

• The coverage area of testbed.

User	 inputs:
-‐	 Tx	 frequency

-‐	 Set	 of	
{Tx	 nodes	 with	
transmit	 power},	

St
ar
t

Grass	 RaPlat	 Process

Static	 node	
parameters

(defined	 by	 node	
implementation)

The	 coverage	 area	 of	
testbed St

op

Figure 18 : Flow diagram for estimation of the coverage area of all active transmitters

2.7.1.5 Hidden	 node	 detection	 virtual	 experiment	
The aim of this virtual experiment is to determine the location of the hidden node, and to calculate the
hidden node interference area. In this respect the user has to specify the received signal level at the
selected receiver node. The experimenter can do this by selecting a random value for received signal
level, however the proposed procedure is to determine these values based on the experiment
“Transmission radio coverage estimation”, assuming one of the transmitter nodes as hidden node.
Based on these measurements GRASS-RaPlaT calculates hidden node position and transmitter power,
which is the input for calculation of the interference areas, as outlined in Figure 19.

Input parameters required are:

• The set of nodes involved in the experiment.
• The carrier frequency in MHz.
• Receiver sensitivity in dBm.

Intermediate result:

• Position of the hidden node.
• Transmit power of hidden node.

Final result:

• Map of interference regions for hidden node.

CREW - FP7 - GA No. 258301 D3.2

 37

User	 inputs:
-‐	 Tx	 frequency

-‐	 Set	 of	
{Rx	 nodes	 with	
signal	 levels},	

St
ar
t Grass	 RaPlat	

Process

Static	 node	
parameters

(defined	 by	 node	
implementation)

Interference	
region St

op

Hidden	 node	 position	
and	

Tx	 power
Grass	 RaPlat	
Process

Figure 19 : Flow diagram for hidden node detection virtual experiment

2.7.1.6 Hidden	 node	 detection	 experiment	 in	 the	 testbed	
This experiment aims at determining the location of the hidden node based on measurements obtained
from the testbed and calculating the hidden node interference area. In this respect the user has to
configure the LOG-a-TEC testbed and specify a set of nodes as receivers and one node as a hidden
node, i.e. transmitter and its power. The receiver nodes measure the signal level and send these data
via the web interface to the GRASS-RaPlaT, which calculates the hidden node position and its
transmit power. Based on these results the interference region is calculated and displayed on the web
based GUI. The flow diagram of this experiment is shown in Figure 20.

Inputs required by this experiment include:

• Configuration of the LOG-a-TEC testbed with
o a set of nodes acting as receivers and
o one node acting as transmitter with transmit power and carrier frequency.

• Raw measurement results from the LOG-a-TEC testbed in terms of
o estimated levels of received signal in dBm and
o the carrier frequency in MHz.

Intermediate result:

• Position of hidden node.
• Transmit power of hidden node.

Final result:

• Map of interference regions for hidden node.

St
ar
t Grass	 RaPlat	

Process

Static	 node	
parameters

(defined	 by	 node	
implementation)

Interference	
region St

op

Hidden	 node	
position	
and	

Tx	 power

Grass	 RaPlat	
Process

User	 inputs:
-‐	 Tx	 frequency
-‐	 Tx	 node
-‐	 Tx	 Power
-‐	 Set	 of	

{Rx	 nodes}	

LOG-‐a-‐TEC
testbed

-‐	 Tx	 frequency
-‐	 Set	 of	

{Rx	 nodes	 with	 signal	
levels}

Figure 20 : Flow diagram for hidden node detection experiment in the testbed

2.7.2 WEB	 server	 –	 GRASS	 RaPlaT	 communication	 for	 coverage	 computation	

The command and data exchange between the web server and GRASS-RaPlaT is illustrated on an
example command for transmission radio coverage estimation, wsn.coverage.

The WEB server requests coverage computation by issuing the following Linux command:
 wsn.coverage --input=<input_file> --output=<output_file> --resolution=<resolution_in_m>

or in short form:
	 	 wsn.coverage	 -‐i	 <input_file>	 -‐o	 <output_file>	 	 -‐r	 <resolution_in_m>	

CREW - FP7 - GA No. 258301 D3.2

 38

	
The command returns 0 upon successful completion, or an error code otherwise. It may also print
some descriptive information on stdout/stderr, but the web servers can safely ignore it.

The input and output parameters contain the paths to the input and output files. Each path can be either
an absolute one, or relative to the working directory. Both files are text files and are described below.

The resolution parameter defines the computation resolution independently of the resolution of the
digital elevation map (DEM) and clutter maps (which can be interpolated by GRASS if necessary).

2.7.2.1 Input	 file	 format	
The input file (specified by the input parameter) consists of a number of text lines. The first line is the
header line containing a semicolon-separated list of names of data contained in the subsequent lines.
Each following line contains the corresponding data values for one sensor node. Values can be either
floating point numbers or character strings. Spaces are ignored. Each line contains the following data
about a node (the sequence of data is fixed):

• n, e - geographic coordinates, WSG 84 Latitude/Longitude coordinate system, north and east
in degrees,

• h - antenna height above the ground in meters,
• tx_frequency - transmission frequency in MHz (all nodes included in a coverage computation

must use the same transmission frequency, otherwise wsn.coverage returns an error),
• tx_power - transmission power in dBm,
• antenna_gain - antenna gain in dB,
• antena_type - antena type, which is used to define the antenna radiation pattern (antenna

radiation patterns are described in corresponding .MSI files),
• antenna_direction - horizontal antenna direction in degrees (northwards is 0 degrees, clockwise

is positive),
• antenna_tilt - vertical antenna tilt in degrees (downwards is positive).

The last three data are optional and facilitate the use of directed antennas. Even an “undirected”
vertical dipole antenna is actually directed in the vertical plane, but this can often be neglected. A
combination of an undirected antenna and a lighting pole on which it is mounted can result in a
horizontally directed pattern, which can be modeled as a directed antenna.

The header line of the input file is used to check/identify the data format, and looks as follows (spaces
are redundant and used here for better readability):
	 	 n	 ;	 e	 ;	 h	 ;	 tx_frequency	 ;	 tx_power	 ;	 antenna_gain	 ;	 antena_type	 ;	 antenna_direction	 ;	 antenna_tilt	
	
A short form can also be used, if antenna directivity is not important:
	 	 n	 ;	 e	 ;	 h	 ;	 tx_frequency	 ;	 tx_power	 ;	 antenna_gain	
	
An example of a data line for a sensor node is as follows:
	 	 45.91175	 ;	 14.206009	 ;	 10.0	 ;	 868.0	 ;	 15.0	 ;	 1.0	 ;	 undirected	 ;	 0.0	 ;	 0.0	
	
Here, the long form is used for an undirected antenna along with a special antenna type “undirected”.
The node is located in Logatec, Slovenia at the height of 10 m, its radio frequency is 868 MHz,
transmission power 15 dBm (32 mW), and antenna gain 1 dB.

2.7.2.2 Output	 file	 format	
The output file (specified by the output parameter) consists of a number of text lines. The first line is
the header line containing a semicolon-separated list of names of data contained in the subsequent
lines. Each following line contains the corresponding data values for one raster point of the calculated
coverage map. These data are the raster point’s geographic coordinates, followed by a list of radio
signal strengths received from each of the nodes (the sequence of the nodes is the same as in the
previously described input file, which defines them). The number of raster points is defined with the

CREW - FP7 - GA No. 258301 D3.2

 39

size of the DEM and clutter maps (fixed within wsn.coverage) and the selected computation resolution
(defined by the ws.coverage	 parameter resolution).

The header line of the input file is used to check/identify the data format and looks as follows (spaces
are redundant and used here for better readability):

• n, e - geographic coordinates, WSG 84 Latitude/Longitude coordinate system, north and east
in degrees,

• node1 - received power from node 1 at this geographic point in dBm,
 ...

• nodeN - received power from node N at this geographic point in dBm.
In case of 5 nodes, the header line would be (spaces are included for better readability):
	 	 n	 ;	 e	 ;	 node1	 ;	 node2	 ;	 node3	 ;	 node4	 ;	 node5	
	
A data line for a point about 300 m SW form the node in Logatec as defined above would be (the
received power values displayed here are fictional):
45.910033	 ;	 14.203348	 ;	 -‐54.3	 ;	 -‐43.2	 ;	 -‐32.1	 ;	 -‐45.6	 ;	 -‐78.9	

2.7.3 Scheduler	 for	 LOG-‐a-‐TEC	 Testbed	
In order to allow the access to the LOG-a-TEC testbed and to sequentially execute planned
experiments we decided to develop a scheduler which should support:

• User registration,
• Time slot reservation,
• LOG-a-TEC access control,
• Administration interface,
• User access control,
• Overall control,

2.7.3.1 Implementation	 of	 the	 scheduler	
Technologies used for LOG-a-TEC scheduler implementation include MySQL, PHP, jQuery &
JavaScript. We have started the implementation of the LOG-a-TEC scheduler by designing the
MySQL database consisting of three tables (see Figure 21). The main table is the “users” table. Each
registered user will have an entry in this table, while tables “session” and “scheduler” support the
functionality of the scheduler system.

CREW - FP7 - GA No. 258301 D3.2

 40

Figure 21 : LOG-a-TEC scheduler database design

The next step was to make connections in the database. For this PHP was used as a backend
technology and jQuery and JavaScript as frontend technologies. The frontend is designed to be easy to
use and that the user can easily create an account and reserve the testbed in just a few clicks.

Additionally the user interface includes the administrator access which has full control over all the
regular users making testbed reservations. The described system architecture is depicted in Figure 22.

File system

Database

Mail client

PHP
interpreter

Users

Figure 22 : LOG-a-TEC scheduler system design

CREW - FP7 - GA No. 258301 D3.2

 41

2.7.3.2 Usage	 of	 the	 LOG-‐a-‐TEC	 scheduler	
Upon entering the system the web page displays the information about the project and some standard
information such as contact details, pictures, etc. Furthermore, the user has an option to open a panel
in header of the page to make registration or just sign in with an existing account. As shown in the ,
the same interface is used for users and administrators.

Figure 23 : Header panel

2.7.3.2.1 User interface
When accessing the portal the user is served with a form to create an account or log in with an existing
account. Upon the creation of an account the user receives an email with a randomly generated
password. After admin approves a new account the user gets access to LOG-a-TEC scheduling system,
depicted in Figure 24 .

After a successful login the user is able to change the automatically generated password. When logged
in, he/she is able to access the calendar and make a reservation of the testbed facilities based on hourly
timeslots. The reservation process can also define a timeslot consisting of several hours. Since each of
the three WSN clusters has its own calendar it is possible to reserve one cluster, two clusters or all
three in the same time slot or in separate time slots. An existing reservation can also be at any
subsequent occasion edited or removed. Furthermore, the user will be able to see reservations of other
users but will not be able to change them.

The user interface is made using jQuery library, so the page does not need to be refreshed to get new
information, i.e. while looking the calendar it will be possible to see how new reservations are created.

Figure 24 depicts the calendar interface. There are two events visible, one gray and one blue. Both
events were made by test user. The gray event occurred in the past and is thus not editable. It will go
in the history of passed reservations. The blue timeslot is editable, since this event has not started yet.
The current time is depicted on the calendar using a red line, and when the line reaches a reservation it
activates it.

Figure 24 depicts the event when the reservation becomes active. The event is not editable anymore
additionally a popup allowing the LOG-a-TEC access appears.

CREW - FP7 - GA No. 258301 D3.2

 42

Figure 24 : Calendar interface: example of activated timeslot

When the session time for a given user is up he/she will automatically be disconnected from the portal
(see Figure 25) and will have to make a new reservation in order to gain access again.

Figure 25: LOG-a-TEC interface

2.7.3.2.2 Administrator interface
The administrator account with user interface depicted in Figure 26 allows for:

• Approving registrations
• Changing user access level admin/normal
• Making reservations
• Editing every reservation
• Monitoring the current use of the system
• Controlling activated timeslots

CREW - FP7 - GA No. 258301 D3.2

 43

Figure 26 : Example of altering timeslot of another user

2.7.3.3 LOG-‐a-‐TEC	 portal	 integration	
The integration of LOG-a-TEC portal and scheduler was done by generating user specific hashes,
which are stored in the database for the duration of the user session. After the session the hash in the
database is destroyed and the user does not have permission to access the portal anymore.
Additionally, the administrator has the power to destroy the hash and to cancel a users’ session if
needed.

CREW - FP7 - GA No. 258301 D3.2

 44

3 Common	 Data	 Collection/Storage	 Methodology	 Design	
CREW Deliverable 3.1 introduced the common data collection and storage methodology design. In
this deliverable we describe the extensions realized in CREW Year 2. This includes a public server for
hosting experimental data, a mechanism for automatically validating the formal correctness of the
user’s experiment specification, extensions to the format and conversion to XML, as well as
MATLAB specification for traces and a set of public scripts to process / convert the traces.

3.1 Public	 server	 concept	 for	 publishing	 experiment	 data	
In order to enable better use of the common data and experiment description format we have started
the CREW repository [1] with several types of data, which are useful for sharing with other
experimenters. We have divided the repository to five sections:

• full experiment descriptions: when reading reports containing experimental results, it is
often difficult or impossible to verify the claims of the author or to use the experiment as a
base for further research. Full experiment descriptions contain all information needed to run a
particular experiment. By publishing full experiment descriptions, we aim for more
transparent and thus more valuable experimentation results. Furthermore, the possibility of
reusing experiment descriptions enables fair comparison (benchmarking) of wireless solutions.

• traces: traces are files describing wireless traffic of heterogeneous technologies, either at
packet level (e.g. a timed sequence of Bluetooth packets, a certain profile of Wi-Fi use, the
activity of a primary LTE user), or data recorded at spectrum level (e.g. recorded spectrum use
in a certain location over time, artificially created patterns containing reference interference on
a particular frequency).

• background environments: background environments are configurations that can be used to
create repeatable wireless background environments and are tied to a particular testbed. The
configuration files of these background environments link particular traces (see above) to
particular nodes at particular times, inside a particular testbed.

• processing scripts: useful scripts (in multiple scripting languages, matlab, java,...) that, for
example, convert the output of a certain type of commercially available tool or CREW
component to the CREW common data format.

• performance metrics and benchmarking scores: detailed descriptions of performance
metrics and measurement methodologies. Benchmarking scores are abstractions derived by
combining different performance metrics. These scores may be useful when comparing a large
set of solutions or for automated decision making during an automated benchmarking process.

3.2 Experiment	 Description	 Validation	
Full experiment descriptions are a very important part of the common data storage methodology. In
Deliverable 3.1 the way in which CREW experiments are described (specified) was defined in detail.
An example was given how the experiment specification can be encoded in JSON (JavaScript Object
Notation), which is a text-based open standard designed for human-readable data interchange similar
to XML. JSON was selected over XML, mainly because it is better human-readable, but there are no
conceptual differences between the two formats. Also, libraries and conversion tools exist that can
convert from one version to the other.

During Year 2 we identified that XML has an advantage over JSON, namely XML is used within the
OMF framework, which is already employed in several testbeds. Therefore typically these testbeds
already have the necessary software libraries installed for working with XML encoded documents. To
minimize software dependencies, in Year 2 we therefore selected XML as the primary choice for

CREW - FP7 - GA No. 258301 D3.2

 45

encoding experiment specification. Since JSON can be converted to XML the specification (metadata)
defined in Deliverable 3.1 remains unchanged.

An experimenter using the CREW experiment specification to document his/her experiment may (by
accident) introduce syntactic or semantic errors into the document. In order to automatically check a
CREW experiment specification for syntactic (and some semantic) errors, we are using a syntax parser
and have defined the XML schema for our experiment specification as shown in 3.2.1. An XML
schema defines the logical structure of all fields in a XML and there exist tools that validate the
correctness an XML document based on a given schema. In addition we also added a mechanism to
create a unique CREW tag, which is used to automatically uniquely define an individual experiment
specification (e.g. for reference in a paper).

We have implemented a small software framework that integrates the above techniques into a
validation tool for CREW experiment specifications. The service is provided through a web-interface,
i.e. an experimenter my use the service (and upload the validated experiment description) remotely
over the Internet. An excerpt of the web-interface can be seen in Figure 27.

Figure 27: XML validator form

The validation tool for CREW experiment specifications implements the following three step
approach:

1. Parsing the XML file for syntax problems and throw related errors to help the file creator
2. Compare the XML file with the defined schema. All fields of the XML file are manifested in

the common data format schema file. If the comparison process will find a undefined field or
e.g., spelling errors the user will be informed and the file rejected

CREW - FP7 - GA No. 258301 D3.2

 46

3. The unique CREW tag is modified for database storage. The tag is defined by "Year-month-
'first author name'-5-digit-number". All information is gathered from the XML file, as well as
from the storage.

All uploaded files are stored in the same folder and available to the public. The XML parser is
available online under http://www.crew-project.eu/portal/CDF. Further we provide at the upload form
(Figure 27) a schema description with documentation to explain the meaning of the subfields.

3.2.1 XML	 Instance	 Representation	

<experimentDescription>

<experimentAbstract> [1] ?
<title> xs:string </title> [1]
<uniqueCREWTag> xs:string </uniqueCREWTag> [1]
<author> [1..*]

<name> xs:string </name> [1]
<email> xs:string </email> [1]
<address> xs:string </address> [1]
<phone> xs:string </phone> [1]

</author>
<releaseDate> xs:date </releaseDate> [1]
<experimentSummary> xs:string </experimentSummary> [1] ?
<collectionMethodology> xs:string </collectionMethodology> [1]
<furtherDocumentation> [1]

<description> xs:string </description> [1]
<bibtex> xs:string </bibtex> [1]

</furtherDocumentation>
<relatedExperiments> xs:string </relatedExperiments> [1] ?
<notes> xs:string </notes> [1]

</experimentAbstract>
<metaInformation> [1] ?

<device> [0..*]
<name> xs:string </name> [1]
<description> xs:string </description> [1]
<datasheet> xs:string </datasheet> [0..*]
<software> [1]

<description> xs:string </description> [1]
<operatingSystem> xs:string </operatingSystem> [1]
<driver> xs:string </driver> [1]
<applicationName> xs:string </applicationName>

[0..*]
<sourcecode> xs:string </sourcecode> [1]

</software>
</device>
<location> [1]

<layout> xs:string </layout> [1]
<mobility> xs:string </mobility> [1]

</location>
<time> xs:string </time> [1]
<radioFrequency> [1]

<operatingRange> xs:string </operatingRange> [1]
<interferenceSources> xs:string </interferenceSources>

[1]
</radioFrequency>
<traceDescription> [1]

<collectedMetrics> [1]

CREW - FP7 - GA No. 258301 D3.2

 47

<name> xs:string </name> [1]
<unitOfMeasurements> xs:string

</unitOfMeasurements> [1]
<accuracy> xs:string </accuracy> [1]

</collectedMetrics>
<format> xs:string </format> [1]
<processingTools> xs:string </processingTools> [1]
<signalGeneration> [1]

<description> xs:string </description> [1]
<trace> xs:string </trace> [1]

</signalGeneration>
</traceDescription>

</metaInformation>
<experimentIteration> [0..*] ?

<description> xs:string </description> [1]
<time> [1]

<starttime> xs:dateTime </starttime> [1]
<endtime> xs:dateTime </endtime> [1]

</time>
<parameters> [1]

<name> xs:string </name> [1]
<value> xs:byte </value> [1]

</parameters>
<traceFile> xs:string </traceFile> [0..*]

</experimentIteration>
</experimentDescription>

3.3 CREW	 trace	 format	
During the experiments performed in the CREW project we have identified that it is very hard to work
with heterogonous hardware devices. Almost all devices produce output in the different format. This is
even the case in the simple energy detection based spectrum sensing, e.g. different devices have
different resolution bandwidths. In Year 1 we defined that traces (traces are the actual measurement
results/samples, whereas experiment specification defines the modalities of the experiments) may be
stored in different formats as long as it is documented sufficiently well how to extract the data.

In Year 2 we have developed the common structure for such traces in MATLAB, because MATLAB
seems to be a preferred choice for storing experiment outcome. It has the following fields:
 p = common data format structure
 p.Name = Unique identifier of the sensing device
 p.Location = Location of the sensing device (m) e.g [x,y,z]
 p.CenterFreq = Array defining center frequencies
 of the columns of power the matrix (Hz)
 p.BW = Bandwidth around each center frequency (Hz)
 p.Tstart = Start time of the measurement in datestr format
 e.g. '24-Jan-2003 11:58:15'
 p.SampleTime = Timestamp relative to Tstart (s)
 p.Power = Matrix containing power measurements (dBm)
 row contains all frequencies for one timestamp

Under http://www.crew-project.eu/repository/scripts (Figure 28) we provide the scripts to convert
data from most devices that are able to perform measurements in 2.4GHz ISM band in CREW project.
We also provide the plotting function that takes advantage of all fields from common data format.

CREW - FP7 - GA No. 258301 D3.2

 48

Figure 28 Matlab scripts

CREW - FP7 - GA No. 258301 D3.2

 49

4 Common	 portal	

4.1 Introductory	 comments	 on	 the	 portal	
As already explained in D3.1, the common portal is a public website, containing all information
needed by experimenters to be able to use the CREW platform. This includes but is not limited to
information on the available hardware, information on how to use the hardware, information on who
can apply for an account and how to do this, and tutorials to get people started.

The CREW portal is located at www.crew-project.eu/portal.

As in the other sections of this deliverable, the content below only discusses updates to the common
CREW portal, and not the general concepts of the portal.

4.2 Updates	 to	 the	 portal	
From an implementation point of view, no changes were made to the portal. The biggest changes to
the portal are:

4.2.1 Addition	 of	 JSI	 sections.	 	 	
Partner JSI joined the CREW project in July 2010, complementing the CREW platform with an
outdoor wireless sensor network. The portal was extended so that the JSI testbed is now also
described according to the same template as the other CREW testbeds.

4.2.2 Updates	 and	 extensions	 to	 the	 content.	 	
Where needed, the portal information was extended or updated. It now also covers the functionality
and APIs that were added during the second year of CREW, and explains the old functionalities in a
more clear way.

4.2.3 The	 CREW	 repository.	 	 	
Last but not least, as already introduced in Section 3.1, a repository section was added to the CREW
portal [1]. The CREW repository contains a collection of data of different types that are believed to be
of use to experimenters in the field of cognitive radio and cognitive networking.

4.3 Portal	 Statistics	
At the moment of writing this deliverable, it can be seen from the public website visitors monitoring
that –so far- in year 2 of CREW (October 2011 – end of August 2012), over 652 unique (1039 in total)
page views of the www.crew-portal.eu/portal page were recorded. On average, visitors spend 1 min 8
seconds on this entry page, indicating that most of the people reaching this page are really interested in
the portal content and do not arrive there by accident. Moreover, over 85% of these visitors continues
browsing the CREW portal (or CREW website) after reaching the CREW portal welcome page.

Not surprisingly, there is particular interest in the CREW portal when information on the open call is
disseminated. For example, as can be seen from Figure 29, after the announcement of the second open
call in July 2012, the number of visitors roughly doubled.

CREW - FP7 - GA No. 258301 D3.2

 50

Figure 29 - Y2 (11 months) page views for the entry page of the CREW portal, totals per month

With 652 unique views during the same 11-months time span, the portal entry page is the third most
popular page of the public CREW website; Only the general entry page (www.crew-project.eu – 2474
unique views – average time on page 1 min 18 sec) and the open call information (www.crew-
project.eu/opencallinfo - 1039 unique views – average time on page 4 min 42 seconds) are more
popular. The interested reader can find the complete top 10 in Figure 30.

As such, these statistics show the continued relevance of the CREW portal.

Figure 30 - Y2 (11 months) top 10 most popular

CREW - FP7 - GA No. 258301 D3.2

 51

5 Testbeds	 components	 and	 combinations	
This section starts by discussing the mix and match combinations performed within the project, to
date, as part of the interoperability testing work within the CREW project. A table is presented
categorising and accounting for the component combination performed. For each component
combination a description or reference (within this or another deliverable, peer reviewed publication
or both) to further information is provided.

As many of the mix and match combination are highly reliant on efficient device interfacing, the mix
and match discussion is followed by interface information for both the TCS Transceiver API and the
VESNA-based testbeds (Ljubljana and Logatec). The Transceiver API description includes set-up
details, an architectural overview and code breakdown, while the VESNA-based testbed descriptions
outline how the testbeds can be controlled via HTTP-like interface, C interface or via custom firmware
image. This forms part of the interface design and specification work of CREW.

5.1 Mix	 and	 match	
The following table presents a summary of mix and match combinations performed over the first two
years of the project between CREW partners and members of the first open call. These have been
categorized into hardware (H), software(S) and/or side-by-side(S-B-S) combinations, those marked in
in bold signify cross-country combinations whereas those not in bold signify intra-country
combinations.

Hardware combinations are those where either a hardware coupling of two components from different
testbeds is performed to avail of the benefits provided by each of the platforms individually or else
where hardware is taken from one of the testbeds and physically integrated into another. Software
combinations are where software developed in one testbed is used with hardware of another testbed,
this can be either a full integration full use in the testbed nodes or else performed just for a specific
experiment. Finally, side-by-side combinations are where recordings are performed in parallel on
multiple devices located side-by-side and then processed together to provide a combined solution.

	 Iris	 IBBT	 Imec	 TWIST	 LTE-‐TUD	 TCS	 EADS	 VESNA	 Durham	 Ilmenau	 Tecnalia	

Iris	 	 	 S,	 S-‐B-‐
S	

H,	 S,	 S-‐
B-‐S	

S-‐B-‐S	 	 S-‐B-‐S	 	 S-‐B-‐S,	
planne
d	 H	

Planned	 H,	 S	 	 S	

IBBT	 S,	 S-‐B-‐S	 	 H,	 S-‐B-‐
S	 	

	 	 	 S-‐B-‐S	 S-‐B-‐S	 Planned	 	 	

Imec	 H,	 S,	 S-‐
B-‐S	

H,	 S-‐B-‐
S	 	

H,	 S,	 S-‐
B-‐S	

S-‐B-‐S	 	 S-‐B-‐S	 S-‐B-‐S	 S-‐B-‐S	 H,	 S	 	

TWIST	 S-‐B-‐S	 	 H,	 S,	 S-‐
B-‐S	

	

	 	 S-‐B-‐S	 S-‐B-‐S	 S-‐B-‐S	 	 	

LTE-‐TUD	 	 	 S-‐B-‐S	 	
	

S-‐B-‐S	 	 	 	 	 	
TCS	 S-‐B-‐S	 	 	 	 S-‐B-‐S	 	 	 	 	 	 S	
EADS	 	 S-‐B-‐S	 S-‐B-‐S	 S-‐B-‐S	 	 	

	

S-‐B-‐S	 S-‐B-‐S	 	 	

VESNA	 S-‐B-‐S,	
Planned	
H	

S-‐B-‐S	 S-‐B-‐S	 S-‐B-‐S	 	 	 S-‐B-‐S	
	

	 	 	

Durham	 Planned	 Planned	 S-‐B-‐S	 S-‐B-‐S	 	 	 S-‐B-‐S	 	
	

	 	
Ilmenau	 H,	 S	 	 H,	 S	 	 	 	 	 	 	

	

	
Tecnalia	 S	 	 	 	 	 S	 	 	 	 	

	

Table 4: Mix and match performed combinations. Categorised as hardware(H), software(S)
and/or side-by-side(S-B-S) combinations, those marked in in bold signify cross-country

combinations whereas those not in bold signify intra-country combinations.

CREW - FP7 - GA No. 258301 D3.2

 52

As can be seen from the table, a large number of different combinations have been performed
involving all CREW federation and open call partners, including both intra-country and a large
number of cross-country combinations. As no such table was provided in D3.1, below we categorize
these mix and match combinations into those performed in the first year and those performed in the
second year of the project. Many of the combination experiments performed in year two build on and
extend the combinations performed in year one of the project. As the main focus of CREW is to
facilitate experimentally-driven research in cognitive radio, cognitive networks and advanced
spectrum sensing these combinations serve as examples of combinations which can be easily
performed within the CREW federation.

5.1.1 Year	 2	 mix	 and	 match	 combinations	

5.1.1.1 Integration	 of	 Iris	 into	 IBBT	 Testbed	
Type: Software

Participants: Iris, IBBT

Description: Description given in Section 2.5.

5.1.1.2 Context	 Awareness	 in	 the	 ISM	 Band	 –	 cafeteria	 environment,	 IMEC	
Type: Side-by-side

Participants: Iris, IBBT, IMEC, TWIST, VESNA

Description: Description given in D6.2, Section 2.1.3 and [13].

5.1.1.3 2.1.2	 Context	 Awareness	 in	 the	 TVWS	 –	 Experiment	 in	 the	 Logatec,	 JSI	
Type: Side-by-side

Participants: IBBT, IMEC, TWIST, VESNA

Description: Measurements were performed from a mobile vehicle in the area of LOG-a-TEC testbed
in the city of Logatec, Slovenia, in a similar way to as done in D6.2 Section 2.1.2. Sensing using
heterogeneous devices was performed of both DVB-T and wireless microphone signals in order to
verify pathloss estimates.

5.1.1.4 Multi-‐antenna	 sensing	 of	 LTE	 devices	
Type: Side-by-side

Participants: LTE-TUD, TCS

Description: Description given in D6.2, Section 2.5.1.

5.1.1.5 Integration	 of	 TCS	 Transceiver	 API	 and	 Iris	 into	 Tecnalia	 Experiment	
Type: Software

Participants: Iris, TCS, Tecnalia

Description: Description given in Tecnalia open call deliverable D7.3.1.

5.1.1.6 Integration	 of	 Imec	 Sensing	 agent	 into	 TWIST	 Testbed	
Type: Software, Hardware

Participants: Imec, TUB

CREW - FP7 - GA No. 258301 D3.2

 53

Description: Description given in Section 2.2.

5.1.1.7 Use	 of	 nomadic	 testbed	 for	 channel	 sounding	 measurements	 in	 EADS	 plane	 mock-‐up	
Type: Other; combination of software and Side-by-side

Participants: IBBT, IMEC TWIST, EADS, VESNA, Durham

Description: Short description of given in Section 2.5 (nomadic testbed), also discussed in D6.2
Section 2.2.2 (channel sounding and communication system design).

5.1.1.8 Sensing	 experiments	 with	 open	 call	 partner	 Durham	
Type: side-by-side

Participants: IBBT, IMEC, TWIST, EADS, Durham

Description: As also reported in D5.2, among other things, channel sounder measurements have been
performed in the TWIST testbed and at EADS, and are planned in the IBBT testbed. Detailed results
will be reported in the open call deliverables of Open Call partner Durham.

5.1.1.9 Coupling	 of	 Iris	 and	 the	 IMEC	 sensing	 platform	 with	 open	 call	 partner	 Ilmenau	
Type: Hardware, software

Participants: Iris, IMEC, Ilmenau

Description: Both hardware and software coupling of the IMEC sensing platform and Iris for use in
contention based MAC protocols. Description given in D7.2.1.

5.1.2 Year	 1	 mix	 and	 match	 combinations	

5.1.2.1 Integration	 of	 IMEC	 sensing	 nodes	 into	 IBBT	 testbed	
Type: Hardware

Participants: IBBT, IMEC

Description: Description given in D3.1, Section 5.3.

5.1.2.2 Combination	 of	 IMEC	 sensing	 platform	 and	 Iris	 transceiver	 link	
Type: Hardware

Participants: Iris, IMEC

Description: Description given in D6.1, Section 2.4.1.

5.1.2.3 Comparison	 of	 devices	 –	 office	 environment,	 TCD	
Type: Side-by-side

Participants: Iris, IBBT, IMEC, TWIST

Description: Description given in D6.1, Section 2.1.1 and [14], [15].

5.1.2.4 Comparison	 of	 devices	 –	 office	 environment,	 TUD	
Type: Side-by-side

CREW - FP7 - GA No. 258301 D3.2

 54

Participants: Iris, IBBT, IMEC, TWIST, LTE-TUD

Description: Description given in D6.1, Section 2.1.1 and [14], [15].

5.1.2.5 Comparison	 of	 devices	 –	 office	 environment,	 TUB	
Type: Side-by-side

Participants: Iris, IBBT, IMEC, TWIST, EasyC

Description: Discussed briefly in D6.2 Section 2.1.1. Formed a basis for 5.1.1.2 above.

5.2 Transceiver	 API	

5.2.1 Introduction	
The TCS Transceiver API is an interface specification [16]. For industrial standardization
requirements and to master architectures, the Transceiver API was specified in the Wireless
Innovation Forum (WInnF) by TCS Communications & Security. Thus, while the Transceiver API
doesn't provide any additional experimental functionality, it standardizes the interface between the
Modem (any WaveForm application) and the Transceiver Subsystem (any transceiver device, as was
done as part of the TECNALIA experiment in Task 7.3 of Work package 7 for example, with several
Ettus Research USRP2 boards used as sensing nodes).

5.2.1.1 Goal	
The goal of this section is to provide a short guide to get started with the transceiver implementation
on USRP board. It provides:

• A description of the versioning of the Ettus Research USRP2 board environment
• A quick architectural and design overview of the solution
• The salient features of the implementation
• A files list and configuration variables description

5.2.1.2 System	 overview	
The Transceiver Facility is a specification that provides a reference API addressing the common
programming needs of radio transceivers [16]. It is built upon core basic concepts like the transmitter
and receiver channel, the radio programming by a tuning profile and time profile for radio bursts and
simple interface for I&Q baseband samples exchange.

The implementation of this interface on USRP2, also called “Façade” could be summarized as
depicted in the figure below. It is worth noting that the implementation described in this section refers
to the current version of the specification (version 1 of the document, the only openly published
document at the present time), therefore the implementation suffer from the ambiguities that remain on
the official document, like the stop time and burst size inconsistencies or Undefined time mode usage.

CREW - FP7 - GA No. 258301 D3.2

 55

PC

UHD Driver

USRP2 board Façade

SDR Appli.
WInnF Transceiver API

Fast-prototyping Transceiver Subsystem

Figure 31: Transceiver implementation “Façade” in the overall system.

5.2.1.3 Intended	 audience	
This section describes the implementation of the Transceiver Facility Interface on the USRP2 board.
The aim of the next chapters is not to be exhaustive on the description of the software development or
implementation but to provide a quick reference for a better understanding of the code. This section is
typically aiming at developers wanting to enhance the existing code by adding new functionalities
(“transceiver developers”) or waveform designers wanting to use the current implementation of the
transceiver for waveforms running on top of USRP2.

The section 5.2 makes the assumption that the reader is acquainted with the Transceiver Facility
Specification document as available on the CREW portal, and the concepts it introduces. Otherwise
the understanding of the next chapters could be difficult.

5.2.2 Set-‐up	 details	

5.2.2.1 Installing	
No specific installing steps are required for the transceiver implementation. The common USRP UHD
driver installing procedure can be followed as depicted in USRP2 manufacturer website Ettus
Research.

Please refer to [17] for more details.

5.2.2.2 IDE,	 development	 and	 linking	
The code was developed using Eclipse IDE Platform SDK v3.5.2 with CDT Toolchain for Build and
Debug (source included), CDT Utilities, Eclipse C/C++ Development Tooling Source, Eclipse C/C++
DSF gdb Debugger Integration (source included).

Together with UHD driver, the implemented code is using the Boost library and the Ommithread lib.
These libraries need to be linked with the target binary.

The Eclipse project XCVR_USRP2_v1.0 file already contains the necessary settings.

For reference the table below compiles all the environment configuration and driver versioning
information.

Table 5: Driver and environment versioning control.

Item Version

CREW - FP7 - GA No. 258301 D3.2

 56

Item Version

Linux PC Ubuntu version 11.04

UHD driver 003.004.002-128-g12f7a5c9

Eclipse IDE Platform SDK v3.5.2

CDT GNU Toolchain Build Support 6.0.0.201002161416

CDT GNU Toolchain Build Support Source 6.0.0.201002161416

CDT GNU Toolchain Debug Support 6.0.0.201002161416

CDT GNU Toolchain Debug Support Source 6.0.0.201002161416

CDT Utilities 5.1.0.201002161416

Eclipse C/C++ Development Tooling Source 6.0.0.201002161416

Eclipse C/C++ DSF gdb Debugger Integration 2.0.0.201002161416

Eclipse C/C++ DSF gdb Debugger Integration Source 2.0.0.201002161416

5.2.2.3 Hardware	
The implementation was carried out for the USRP2 board. Several daughter boards were available
during development. Owing to the focus on time response functionalties implementation and
validation, Basic TX and Basic RX daughter boards were used. A digital oscilloscope was used for
validation of TX. A signal generator was used for the RX functionalities testing. The current
implementation version does not use RF features of the USRP2 hardware set-up.

5.2.3 Overall	 architecture	

5.2.3.1 Components	 and	 software	 architecture	
The “Façade” implementation is primarily based on the UHD driver. However it relies as well on
standard C++ libraries, especially on the boost library. Also the ommiThread library is used for
threads creation and multitasking primitives like mutexes and semaphores. The Figure 32 depicts this
simple layered architecture.

LINUX	 OS	 UBUNTU

Boost	
library

OmmiThread	 	
library

UHD	 driver

TRANSCEIVER	 ON	 USRP2

CREW - FP7 - GA No. 258301 D3.2

 57

Figure 32: Transceiver on USRP2 simple layered architecture.

5.2.3.2 Logical	 architecture	
The whole implementation is based on the concepts from the Transceiver Facility document.

This approach turns out into the implementation of a main class DeviceImp with two key attributes: a
TransmitChannel and a ReceiveChannel classes. It is important to note that any transceiver
device implementation instantiation creates both Transmit and Receive channels, whatever the modem
waveform on the other side of the API needs are.

The next picture provides an overview of the transceiver overarching architecture.

Figure 33: DeviceImp class and attributes.

The only possible interactions between the transceiver and the modem waveform are those described
on the Transceiver API document.

Thus for receive functionalities, waveform interfaces through:

Transceiver::ULong createReceiveCycleProfile(

 Transceiver::Time requestedReceiveStartTime,

 Transceiver::Time requestedReceiveStopTime,

 Transceiver::ULong requestedPacketSize,

 Transceiver::UShort requestedPresetId,

 Transceiver::Frequency requestedCarrierFrequency);

void configureReceiveCycle(

 Transceiver::ULong targetCycleId,

 Transceiver::Time requestedReceiveStartTime,

 Transceiver::Time requestedReceiveStopTime,

DeviceImp

errorManager:ErrorManager1

ErrorManager(device:Device...
~ErrorManager()
errorCheckReceiveCycle(in...
errorCheckTransmitCycle(in...

receiveChannel:ReceiveChannel1

mutex_fifoBuffer:omni_mutex *
mutex_rxCycleProfilesBuffer:omni_...
mutex_condVar:omni_mutex *
rxStopSignal:bool
basebandFIFORX:std::queue<Tran...
rxCycleProfilesBuffer:std::vector<T...
cycleID:ULong
programmedCarrier:typeFrequency
programmedPreset:UShort

ReceiveChannel(myDeviceImp:De...
~ReceiveChannel()
doTuning(receiveCycle:Transceive...
createReceiveCycleProfile(request...
setReceiveStopTime(targetCycleId:...
configureReceiveCycle(targetCycl...
processChannel():void

transmitChannel:TransmitChannel1

mutex_fifoBuffer:omni_mutex *
mutex_txCycleProfilesBuffer:omni_m...
numberOfFullVectors:ULong
basebandFIFO:std::list<Transceiver:...
txCycleProfilesBuffer:std::vector<Tr...
cycleID:ULong
programmedCarrier:typeFrequency
programmedPreset:UShort

TransmitChannel(myDeviceImp:Devi...
~TransmitChannel()
createTransmitCycleProfile(request...
configureTransmitCycle(targetCycle...
setTransmitStopTime(targetCycleId:...
pushBBSamplesTx(thePushedPacke...
doTuning(transmitCycle:Transceiver...
popBasebandFIFOBurst():sampleLine
processChannel():void

CREW - FP7 - GA No. 258301 D3.2

 58

 Transceiver::ULong requestedPacketSize,

 Transceiver::Frequency requestedCarrierFrequency);

void setReceiveStopTime(

 Transceiver::ULong targetCycleId,

 Transceiver::Time requestedReceiveStopTime);

And for transmit functionalities, waveform interfaces through:

void pushBBSamplesTx(

 Transceiver::BBPacket *thePushedPacket,

 Transceiver::Boolean endOfBurst);

Transceiver::ULong createTransmitCycleProfile(

 Transceiver::Time requestedTransmitStartTime,

 Transceiver::Time requestedTransmitStopTime,

 Transceiver::UShort requestedPresetId,

 Transceiver::Frequency requestedCarrierFrequency,

 Transceiver::AnaloguePower requestedNominalRFPower);

void configureTransmitCycle(

 Transceiver::ULong targetCycleId,

 Transceiver::Time requestedTransmitStartTime,

 Transceiver::Time requestedTransmitStopTime,

 Transceiver::Frequency requestedCarrierFrequency,

 Transceiver::AnaloguePower requestedNominalRFPower);

void setTransmitStopTime(

 Transceiver::ULong targetCycleId,

 Transceiver::Time requestedTransmitStopTime);

For the data exchange, the interface for receive channel is
pushBBSamplesRx(

 BBPacket *thePushedPacket,

 Boolean endOfBurst) = 0;

But this operation (according to the Transceiver Facility Specification) is to be implemented by the
waveform modem1.

5.2.4 System	 wide	 design	 decisions	

5.2.4.1 USRP2	 constraints	
One of the main issues of the USRP2 hardware is the time required for communicating with the board.
Given the fact that data and command and control operations are conveyed through the Ethernet driver

1 For a complete description of this operations please refer to the Transceiver Facility Specification.

CREW - FP7 - GA No. 258301 D3.2

 59

a significant latency is introduced between the PC running the transceiver and waveform and the board
embedded firmware.

This latency introduces two constraints:

• Reduced time accuracy: the transceiver software running on the PC is not able to know with
enough accuracy the actual time of the board;

• Reduced reactivity: a significant anticipation time is necessary to make sure that the requests
are issued in time with regards to the target internal time.

Following measurements performed on the board, this time is estimated to 3 ms. In other words the
transceiver by default requires a minimum anticipation of 3 ms prior to any action on the board.

Example: if one command for a burst creation is targeting time T0+4 ms the corresponding command
needs to be issued at T0+1 ms the latest.

5.2.4.2 The	 main	 transceiver	 task	
The key design principle of the implementation is the inclusion of all the processing in a single task.
During the development phase other alternatives were considered, typically creating two independent
tasks for transmitting (belonging therefore to the TransmitChannel class) and for receiving
(belonging to the ReceiveChannel class) however the existence of two separated tasks required
more elaborated synchronization mechanisms and increased the complexity. The final decision to go
for a single task simplifies significantly the design for a multithreading point of view and reduces
latencies produced by task contention Linux OS mechanisms.

The main transceiver task follows a consumer-producer paradigm: the waveform modem produces
transmission and receive burst requests with a timing profile and tuning profile. These requests are
stored in a cycles buffer. The requests production depends entirely on the waveform modem
execution. The transceiver main task consumes those cycles by performing the corresponding radio
programming of the USRP2 board in accordance to the tuning profile of the burst and sends or
receives samples in accordance to the time profile.

5.2.4.3 Cycles	 buffers	

5.2.4.3.1 The main cycles buffer
The cyclesBuffer from the DeviceImp class stores the cycles requested by the modem. This
buffer is the single entry point for the waveform modem to provide cycles to the transceiver.

It is this FIFO buffer that keeps track of the number of requested cycles and its type (either TX or
RX). The details of the cycle i.e. Tuning profile and Time profile are stored in separated buffers within
transmitChannel and receiveChannel classes. This main buffer is intended as a token buffer
enabling the single transceiver task or cyclesProcessingMainTask() (consumer) to be
synchronized through semaphores to the modem waveform task (producer).

createTransmitCycleProfile() and createReceiveCycleProfile() operations fill
those buffers at each modem waveform invocation.

5.2.4.3.2 Transmit cycles buffer
This buffer is independent from the main cycles buffer from DeviceImp class. It is filled by the
createTransmitCycleProfile() operation. The TX burst or cycle details are stored in this
buffer. It stores elements of the type class TransmitCycleProfile.

CREW - FP7 - GA No. 258301 D3.2

 60

5.2.4.3.3 Receive cycles buffer
Similar to the previous buffer, this buffer is independent from the main cycles buffer from
DeviceImp class. It is filled by the createReceiveCycleProfile() operation. The RX burst
or cycle details are stored in this buffer. It stores elements of the type class
ReceiveCycleProfile.

5.2.4.4 The	 synchronization	 between	 modem	 and	 transceiver	
Producer consumer synchronization is achieved taking advantage of the usage of the common buffer.
A counting semaphore is allocated to the common buffer. The semaphore behaves as follows:

• The counting semaphore is initialized to a maximum value defined as constant in the constants
file.

• The value is decremented by createTransmitCycleProfile() and
createReceiveCycleProfile() operations.

• The value is incremented every time one cycle is processed by the main transceiver task.

The figure below provides an overview of the transceiver real-time architecture.

Figure 34: Main Transceiver task, modem and buffers synchronization.

5.2.4.5 Tuning	 presets	

5.2.4.5.1 Tuning presets identification
Following the specification guidelines the radio parameters programming is encapsulated in the
“Tuning Presets” concept. Tuning presets are defined as a set of variables corresponding to a specific
radio profile. By definition and as stated in the specification the tuning preset contents, in terms of
variables and their values ranges, is highly depending on the hardware. For the sake of simplicity the
implementation covers a very reduced number of those parameters.

These parameters were deemed sufficient to characterize the USRP2 platform. Moreover the focus
was rather on the dynamic behaviour and the feasibility of changing on the fly the values of some
parameters from burst to burst (for example the sampling ratio).

CREW - FP7 - GA No. 258301 D3.2

 61

In the present implementation only two arbitrary Tuning presets are defined in the configuration file.

It is important to highlight that Preset value is exchanged between waveform modem and transceiver
by a single number. Both sides of the interface need to know in advance the numbering and Tuning
preset contents. As described in the specification this definition is typically carried out during
engineering phase.

5.2.4.5.2 Tuning presets management
The programming of the USRP2 through its driver has a significant cost in terms of delay. In order to
avoid unnecessary programming, the TransmitChannel and the ReceiveChannel keep track of
the previous programmed Preset and avoid reprogramming if the Preset remains the same as it is the
case for some waveforms.

The attributes programmedPreset within the TransmitChannel and ReceiveChannel
classes hold the last programmed preset.

5.2.4.6 Time	 management	
The time management is the core feature of the implementation. As introduced above the USRP2
latency constraints call for a specific approach in which operations are requested well in advance. This
same latency makes difficult accurate time tracking on the PC hosting the Transceiver Façade.

Indeed the Façade never knows the time with precision; it is actually timed thanks to the bursts
(cycles creation). The first bursts either TX or RX are requested with Immediate time mode. This
resets the internal board counter to zero and establishes a reference time, the first activation, to be used
by further bursts using EventBased time mode with time shifts based on this very first activation.
It is also possible, in order to avoid tracking the time from the very beginning, to use the previous
burst activations (event sources TransmitStartTime and ReceiveStartTime). As far as
EventBased time is used, the Façade is therefore able to timely create Bursts activations.

If Immediate time mode is used in ways other than the first activation, the transceiver cannot
guarantee time tracking and synchronization between the Façade and the USRP2 board is lost. For
these cases the Transceiver behaviour is considered as undefined.

One of the identified shortcomings of the current version of the Transceiver Facility Specification is
the ambiguity regarding Undefined time mode. The Specification describes this time mode as
any other time mode (Absolute, Event Based, Immediate) and thus it could be used for both start time
and stop times. However, it usage as start time is clearly confusing, and overlapping with the
Immediate one. In consequence, in the USRP2 implementation the Undefined mode is reserved for
stop time only.

When requesting an Undefined stop time burst2, the transceiver will receive samples in a continuous
way until the setReceiveStopTime() operation is invoked by the modem waveform.

5.2.4.7 Supported	 functionalities	
The current version of the implementation is supporting a limited number of features:

• A reduced sub-set of timing modes and combinations are implemented: Only Immediate and
Event Based time modes are supported. Moreover Event Based mode is only supporting
TransmitStartTime event source for the Transmit Channel and the
ReceiveStartTime event source for the Receive Channel.

2 For high sampling rates the waveform modem running on the PC and the Ethernet configuration shall make sure the samples are retrieved
fast enough. Otherwise the UHD driver will signal buffer overflow error.

CREW - FP7 - GA No. 258301 D3.2

 62

• Undefined time mode is only supported for the receive channel. Since reception during
undefined and potentially long durations is a common use case for waveforms requesting
typically a synchronization procedure, the implementation priority was given to the receive
channel.

• Radio programming (“tuning profile”) features are simplified: Only sampling ratio is actually
implemented within the Tuning Preset.

• It is possible to send several packets (pushBBSamplesTx()) for a burst, however only one
single packet per burst has been validated.

• Error manager extension is not implemented.

5.2.5 Reference	 diagrams	

5.2.5.1 Transmit	 channel	 process	 channel	 diagram	
The Transmit channel process channel diagram is given in Figure 35.

Figure 35: Transmit channel process channel diagram.

Retrieve Tx
Cycle from Tx
Cycles buffer

Check Tx Cycle
data consistency

Retrieve Tx
Cycle Preset
from Presets

Table

Tune Tx Cycle
Tuning Profile

startTime
Time

discriminat

Time to send =
lastTransmitTime +

timeShift

Update Context

Send Samples

Time to receive =
lastTransmitTime +
ImmediateMargin

Immediate
time mode

Event Based
time mode

CREW - FP7 - GA No. 258301 D3.2

 63

5.2.5.2 Receive	 channel	 process	 channel	 diagram	
The Receive channel process channel diagram is given in Figure 36.

Figure 36: Receive channel process channel diagram.

Retrieve Rx
Cycle from Rx
Cycles buffer

Check Rx Cycle
data consistency

Retrieve Rx
Cycle Preset
from Presets

Table

Tune Rx Cycle
Tuning Profile

Get Rx samples
Burst

startTime
Time

discriminat

Time to send =
lastReceiveTime +

timeShift

Update Context

Prepare Rx
buffer

Time to send =
lastReceiveTime +
ImmediateMargin

Undefined
stopTime ?

Receive Samples

Wait for stop signal

Receive Samples

Stop
Signal ?

Yes, Continuous Receive mode No, Single packet Receive mode

Immediate
time mode Event Based

time mode

No Yes

CREW - FP7 - GA No. 258301 D3.2

 64

5.2.6 Code	 breakdown	

5.2.6.1 List	 of	 files	
transceiver_implementation_usrp2.hpp:

This file contains the main classes definition and some additional structures and data types.

transceiver_implementation_usrp2_config.hpp:

This file contains all the constants for transceiver configuration (refer to next chapter for further
details).

transceiver_implementation_usrp2.cpp:

This file contains the DeviceImp class constructor/destructor and Preset configuration operations.

transceiver_implementation_ursp2_rx.cpp:

This file contains the ReceiveChannel class constructor/destructor and operations.

transceiver_implementation_usrp2_tx.cpp:

This file contains the TransmitChannel class constructor/destructor and operations.

transceiver_implementation_main_task.cpp:

This file contains the transceiver cycles processing main task.

transceiver_implementation_common.cpp:

This file contains shared code.

transceiver_implementation_usrp2_error_man.cpp:

This file contains the error manager (not implemented).

5.2.6.2 Global	 configuration	 variables	
The configuration header contains a number of global constants that define the USRP2 configuration
and board settings.

Maximum number of cycles: the number of both TX and RX cycles that the transceiver can put in
the FIFO buffer at a given time.

static const Transceiver::UShort MAXCYCLES = 10;

Maximum packet size: the maximum number of samples in a packet. This number is directly related
to the Ethernet driver configuration. 363 is the maximum value to avoid fragmentation on the PC size
and reconstruction in the board embedded firmware.

static const Transceiver::Long MAX_PACKET_SIZE = 363; // Current
ethernet transport conf. 363x2(I&Q)*16 = 1452 bytes

Default carrier frequency: the default RF carrier frequency value is in Hz.

static const Transceiver::Frequency DEFAULT_CARRIER_FREQ = 100e6; //
100 MHz

Default analogue power: the Default analogue power is in dBm (not used in the current version).

CREW - FP7 - GA No. 258301 D3.2

 65

static const Transceiver::AnaloguePower DEFAULT_ANALOGUE_PW = 10;

Number of presets: is the predefined number of tuning presets supported by the implementation.

static const Transceiver::UShort NUMBER_OF_PRESETS = 2;

MHz constant: is the constant definition for MHz calculations.

static const Transceiver::ULong MHz = 1e6;

nanoseconds constant: is the constant definition of nanoseconds for calculations.

static const Transceiver::ULong nSec = 1e9;

Reactivity time margin: is the time guard for immediate time commands.

static const Transceiver::ULong TIMEMARGIN = 3e6; // 3 us

Maximum number of receive cycles: is the maximum number of receive cycles that the transceiver
can store in the RX FIFO buffer at a given time.

static const Transceiver::UShort MAXRXCYCLES = 10;

Default RX sampling frequency: is the Default sampling frequency for the receive channel.

static const double DEFAULT_RX_SAMPLING_FREQUENCY = 100e6/64;

Time margin for immediate receive requests: is the time margin that is added to current time at any
receive immediate time request.

static const Transceiver::AbsoluteTimeStruct
IMMEDIATE_MARGIN_RX(1,0);

Default RX antenna configuration: is the settings for the receive channel antenna (configuration
options are depending upon the daughter board options).

static const std::string DEFAULT_RX_ANTENNA = "RX2";

Maximum number of transmit cycles: is the maximum number of transmit cycles that the
transceiver can store in the TX FIFO buffer at a given time.

static const Transceiver::UShort MAXTXCYCLES = 2;

Default TX sampling frequency: is the Default sampling frequency for the transmit channel.

CREW - FP7 - GA No. 258301 D3.2

 66

static const double DEFAULT_TX_SAMPLING_FREQUENCY = 100e6/16; //
6.25 Msps

Time margin for immediate transmit requests: is the time margin that is added to current time at
any transmit immediate time request.

static const Transceiver::AbsoluteTimeStruct
IMMEDIATE_MARGIN_TX(0,5000000); // 5000000 nanoseconds = 5ms

Default TX antenna configuration: is the settings for the transmit channel antenna (configuration
options are depending upon the daughter board options).

static const std::string DEFAULT_TX_ANTENNA = "TX/RX";

5.3 VESNA	 Interfaces	

5.3.1 Overview	
The VESNA based testbed uses a layered approach to the control of wireless sensor nodes and SNE-
ISMTV radio hardware attached to them. Each interface layer provides increased flexibility at the
expense of increased complexity and in turn increased time required to develop, test and verify the
testbed configuration before the experiment can be performed. Since experiments supported by the
testbed can vary greatly in complexity it is therefore up to the experimenter to choose the interface that
represents the best compromise between flexibility and complexity. This section provides an overview
of the available interfaces to aid in this choice.

Interface layers in the order of increasing complexity.

• Nodes running default testbed firmware, control through the HTTP-like resource access
protocol

• Nodes running custom firmware, using C interface to the spectrum sensing and/or signal
generation API

• Nodes running custom firmware, using register-level hardware access

Wireless sensor nodes in the VESNA based testbed communicate through a mesh network based on
ZigBee with proprietary extensions. This back-bone network is used to set up and control the
experiment and retrieve measurement results. It uses separate, dedicated radio hardware and is
therefore independent of any radio operations that are part of the experiment itself. As nodes are not
normally physically accessible, this back-bone connection is the only link between the experimenter
and the hardware.

Each VESNA node runs a single application at a time and can store a large number of applications on
the microSD card. Over-the-air reprogramming infrastructure allows uploading and execution of
applications remotely through the back-bone network. The microSD card is also available to
applications as a temporary non-volatile mass-storage for experimental results.

VESNA nodes in the CREW testbeds are normally running a default, multi-purpose application that
exposes a very high-level interface to the radio hardware. This interface consists of a number of
resources with read- and/or write- access through an application-layer, HTTP-like protocol. Each node
exposes this protocol to the ZigBee mesh network. The ZigBee network coordinator in each testbed
acts as a proxy that provides an encapsulation of this protocol through a TCP/IP connection. A web
application running on a server at JSI accepts the connection from the coordinator and provides a

CREW - FP7 - GA No. 258301 D3.2

 67

proper HTTP REST interface to it. For development and debugging purposes in a laboratory the
HTTP-like protocol can also be exposed on a serial line and connected directly to a desktop computer.

While using the testbed through this interface is sufficient for simple spectrum sensing and signal
generation tasks its usability is limited because of the restricted bandwidth and inherent and
unpredictable delays involved in sending commands to VESNA nodes through the ZigBee mesh
network and the Internet. Experiments that have stricter synchronization requirements must remove
the latency of the network communication and bring control closer to the hardware. In this case, the
experimenter can develop a custom application that is uploaded and executed directly on VESNA
nodes. Removing the need for back-bone network traffic during an experiment is also beneficial when
such traffic might interfere with measurements (e.g. when experiments are done in the same frequency
band as the one used for the back-bone network). VESNA software driver library exposes a spectrum
sensing and signal generation API that abstracts radio hardware details for these two tasks, allowing
for faster development.

SNE-ISMTV hardware on VESNA nodes contains highly configurable transceivers. While none of
them features a true software-defined radio architecture, hardware components can be reconfigured by
software to fit a large number of usage scenarios. The spectrum sensing and signal generation API
provides a number of pre-set hardware profiles that cover most commonly used radio configurations.
This was done to free the experiment developer from the task of configuring radio hardware, which
can be a complicated and time consuming task. If required, new profiles can still be added by the
experimenter though. This usually involves specialized software from the transceiver IC manufacturer
(e.g. SmartRF studio from Texas Instruments for VESNA transceivers based on the Texas Instruments
CC series). Due to implementation details radios may not perform to specification in certain
combinations of settings. This means that each profile usually requires testing and calibration in a
controlled laboratory environment before it can be used for experiments in the field.

Should an experiment need to perform radio operations other than energy detection spectrum sensing
and signal generation, the experimenter can choose to communicate directly with the radio hardware
through register-level access functions. This exposes the full range of features, but requires intimate
knowledge of the hardware involved. Using register-level access functions is outside of the scope of
this document. The last section gives a brief overview and gives references to relevant documentation.

5.3.2 HTTP-‐like	 interface	
Each sensor node in the testbed acts as a server, accepting requests over the ZigBee backbone mesh
network and sending responses back to the client. A protocol similar to HTTP is used in these
transactions. The sensor node exposes a number of resources, each with its unique URL. A client can
issue a GET request to read data associated with the resource, or a POST request, to write data to the
resource. Each resource can also accept a number of parameters, appended to the URL, again similar
to HTTP query parameters.

The HTTP-like resource access protocol itself and the means of accessing it have been described in
more detail in D3.3. The following sections focus only on the resources that can be used to control
SNE-ISM TV hardware.

5.3.2.1 Spectrum	 Sensing	
Nodes can be programmed with spectrum sensing tasks in form of simple programs. Each program has
a start time at which it is activated and an end time at which it is stopped. While the program is active,
the specified spectrum sensing device continuously sweeps its tuner over a range of frequencies,
recording input power at the receive antenna. Results of short spectrum sensing programs can be
retrieved immediately over the network, while longer scans store the results on the SD card for later
retrieval.

All radio tuners used on VESNA based testbeds divide their frequency range into channels. The
translation between the channel number and the tuned frequency depends on the hardware
configuration.

CREW - FP7 - GA No. 258301 D3.2

 68

Each program is hence defined with the following parameters:

• Start time
• End time
• Device and its configuration
• First channel, channel step, last channel
• Destination for the measurement results (slot ID or real-time network output)

Storage of the measurements

Results of measurements are stored and transmitted in a binary format. Each program records multiple
sweeps over the radio frequency spectrum:

+---------+---------+-----+---------+

| sweep 1 | sweep 2 | ... | sweep M |

+---------+---------+-----+---------+

Number of sweeps, M, depends on the length of the spectrum sensing activity and the sweep time of
the chosen device.

Each sweep contains a timestamp of the start of the sweep and input power measurements:
+-----------+---------+---------+-----+---------+

| timestamp | value 1 | value 2 | ... | value P |

+-----------+---------+---------+-----+---------+

 int32_t int16_t int16_t int16_t

Timestamp records the time in milliseconds since the program started and is encoded as an unsigned
32-bit integer.

Input power measurements are in 1/100 dBm (for example 100 => 1.00 dBm, 50 => 0.50 dBm) and
are encoded as signed 16-bit integers.

Number of input power measurements per sweep depends on the first and last channel and channel
step programmed for the spectrum sensing task.

Value N contains power measurement for channel M, where

M = channel_start + channel_step * (N – 1)

and

N is in the range from 1 to channel_num inclusive

Limitations on measurement length and data size

The most relevant limiting factor is the transfer speed of the ZigBee network. Its effective speed is
about 1 kB / second.

The maximum size of an SD card slot is 1 MB. This is enough for approximately 40 minutes of
scanning with CC-series based hardware and approximately 6 hours with the UHF receiver.

When the SD card slot in use is completely full, the scanning is automatically stopped.

Getting hardware information

The following resources allow querying for spectrum sensing hardware present on the node.

GET sensing/deviceList

CREW - FP7 - GA No. 258301 D3.2

 69

dev #0, CC1101, 4 configs

Lists all devices present and number of pre-set configurations available for each device.

GET sensing/deviceConfigList

GET sensing/deviceConfigList?devNum=0

dev #0, CC1101, 4 configs:

 cfg #0: CC1101, f_c=868 MHz, BW=400 kHz:

 base: 868299866 Hz, spacing: 199951 Hz, bw: 406250 Hz,

 channels: 127, time: 20 ms

 cfg #1: CC1101, f_c=868 MHz, BW=800 kHz:

 base: 867999729 Hz, spacing: 199797 Hz, bw: 843681 Hz,

 channels: 63, time: 100 ms

 cfg #2: CC1101, f_c=906 MHz, BW=400 kHz:

 base: 905999991 Hz, spacing: 399595 Hz, bw: 421840 Hz,

 channels: 255, time: 20 ms

 cfg #3: CC1101, f_c=906 MHz, BW=800 kHz:

 base: 905999991 Hz, spacing: 399595 Hz, bw: 843681 Hz,

 channels: 255, time: 20 ms

Lists all configurations for a device. If no device number is given, then all configurations are listed for
all devices.

Please consult Annex I for the full list of procedures on how to get the hardware information.

Spectrum sensing setup

Please consult Annex II for the full list of procedures on how to setup spectrum sensing hardware.

Retrieving the measurements
GET sensing/slotInformation?id=0

size=0
version=0
status=EMPTY
crc=0

Retrieves meta-data about spectrum sensing measurements stored in a SD card slot.

size=%u (1)

version=%u (2)

status=(EMPTY | INCOMPLETE | COMPLETE | UNDEFINED) (3)

crc=%u (4)

Fields (%u - unsigned integer number, represented in decimal notation):

1. Size of stored data, in bytes
2. Uptime of the node in seconds at the time of writing data to the SD card.
3. Status of the slot: EMPTY – the slot does not contain any data and is ready to be used in a

new measurement, INCOMPLETE – data is currently being written to the slot, COMPLETE –

CREW - FP7 - GA No. 258301 D3.2

 70

measurement results have been successfully written to the slot and are ready for retrieval,
UNDEFINED – an unexpected value.

4. CRC of data in the slot.

Please consult Annex III for the full list of procedures on how to retrieve measurement information.

Freeing up data storage slots

For preventing data loss, nodes will refuse to overwrite slots that have data in them. Setting up a slot
that already contains data as destination for measurements will give an error. Slots have to be
explicitly cleared after the data in them has been downloaded

POST sensing/freeUpDataSlot?id=0

length=...

1

crc=...

5.3.2.2 Signal	 Generation	
Nodes can be programmed with signal generation tasks in form of simple programs. Each program has
a start time at which it is activated and an end time at which it is stopped. While the program is active,
the specified signal generation device transmits a signal with the specified central frequency with the
specified power. Transmitted waveform depends on the hardware configuration pre-set and is usually
evident from the configuration's name.

All radio transmitters used on VESNA based testbeds divide their frequency range into channels. The
translation between the channel number and the tuned frequency depends on the hardware
configuration.

Each program is hence defined with the following parameters:

• start time
• end time
• device and its configuration
• transmission channel and power

Getting hardware information

The following resources allow querying for signal generation hardware present on the node.

GET generator/deviceList

dev #0, CC2500, 1 configs

Lists all devices present and number of pre-set configurations available for each device.

GET generator/deviceConfigList

GET generator/deviceConfigList?devNum=0

dev #0, CC2500, 1 configs:
 cfg #0: CC2500, 2.4 GHz, 200 kHz channels:
 base: 2399999908 Hz, spacing: 199814 Hz, bw: 210938 Hz,

 channels: 256, min power: -55 dBm, max power: 0 dBm,

 time: 5 ms

Lists all configurations of a device. If no device number is given, then all configurations are listed for
all devices.

CREW - FP7 - GA No. 258301 D3.2

 71

Format of each entry is as follows:

dev #%u, %s

 (1) (2)

 cfg #%u: %s

 (3) (4)

 base: %u Hz, spacing: %u Hz, bw: %u Hz,

 (5) (6) (7)

 channels: %u, min power: %d dBm, max power: %d dBm,

 (8) (9) (10)

 time: %u ms

 (11)

Fields (%u - unsigned integer number, represented in decimal notation, %d – signed integer number,
represented in decimal notation, %s – free form string):

1. ID of the device, used when referring to it when programming a signal generation task
2. human-readable name of the device
3. ID of the device configuration pre-set, used when referring to it when programming a signal

generation task
4. human-readable name of the configuration
5. central frequency of channel 0
6. difference in central frequency between two adjacent channels
7. transmit bandwidth
8. total number of channels
9. minimum transmission power
10. maximum transmission power
11. setup time in milliseconds

Channel numbers M range from 0 to channel_num – 1. To calculate central frequency for a channel
use the following formula:

f_c = channel_base + M * channel_spacing

Signal generation setup
POST generator/program

length=...

in 10 sec for 10 sec with dev 0 conf 0 channel 0 power -10

in 30 sec for 10 sec with dev 0 conf 0 channel 0 power -20

crc=...

POST data contains one signal generation program per line, maximum 10 lines.

Format of each line is as follows:

in %u sec for %u sec with dev %u conf %u channel %u power %d

 (1) (2) (3) (4) (5) (6)

Fields (%u - unsigned integer number, represented in decimal notation, %d – signed integer number,
represented in decimal notation):

1. Number of seconds until the start of transmission; the start is relative to the moment of
receiving the request.

2. Length of transmission, in seconds

CREW - FP7 - GA No. 258301 D3.2

 72

3. ID of device used for transmission
4. ID of configuration used for transmission
5. Frequency channel used for transmission
6. Transmit power, in dBm

Programs must be sorted by increasing start time and their time intervals must not overlap. If any of
the lines is invalid, the program is rejected.

GET generator/program

in 10 sec for 10 sec with dev 0 conf 0 channel 0 power -10

in 30 sec for 10 sec with dev 0 conf 0 channel 0 power -20

Issuing a GET request to generator/program resource returns the information in same format as used
in the POST request.

The number of seconds until the start of transmission is re-calculated relative to the reception time of
the GET request, hence the number of seconds until transmission is constantly decreasing. When a
program is active, the number of seconds until the start is 0 and the length of the transmission is
decreased accordingly.

5.3.3 C	 interface	
This section describes the C interface to spectrum sensing and signal generation API for transceivers
and receivers on VESNA SNE-ISMTV hardware. It is aimed at the experiment developer that wishes
to develop custom firmware for wireless sensor nodes in VESNA based testbeds while still using the
simple abstract interface to the experimental radio hardware.

Custom firmware can implement arbitrary functionality on the sensor node itself, limited only by the
memory and processing capabilities of the VESNA sensor node core (SNC). However it is expected
that majority of custom firmware configurations will build upon the default firmware and use the
existing framework by integrating with the ZigBee mesh network, resource access protocol and other
testbed infrastructure. For this purpose a VESNA software library (“vesna-drivers”) is provided. The
whole VESNA library is outside of the scope of this document and the following sections focus only
on the spectrum and signal generation part.

The experimenter does not usually have physical access to wireless sensor nodes deployed on public
lighting infrastructure in an outdoor VESNA based testbed. Therefore an error in custom firmware that
makes a sensor node inaccessible through the backbone ZigBee network, and thus also the over-the-air
reprogramming infrastructure, can be a serious issue. In such cases, time consuming and costly manual
access and reprogramming is necessary to restore the sensor node to operation. While there are
mechanisms in place to reduce the probability of such an occurrence (namely a hardware watchdog
timer and an intelligent bootloader that reverts to a known-good configuration in case of a failing
firmware) not all possibilities for such an error can be covered. Therefore any custom firmware must
be thoroughly tested at JSI before being uploaded to one of the outdoor testbeds.

5.3.3.1 Spectrum	 sensing	 API	
Below is a list of steps required to use the spectrum sensing API followed by a detailed description of
data types and functions involved.

1. Choose device and a configuration pre-set. VESNA library already contains definitions for
all devices present on SNE-ISMTV. Many configuration pre-sets are also available, covering
most commonly used hardware configurations. Alternatively the developer may choose to
define a new one.

const struct spectrum_dev *my_dev = ...;

const struct spectrum_dev_config *my_dev_config = ...;

CREW - FP7 - GA No. 258301 D3.2

 73

2. Define a frequency sweep configuration for the chosen device and configuration. Sweep
configuration contains for example the frequency range to be sensed.

const struct sweep_config my_config = {

.dev_config = my_dev_config,

...

};

3. Define a callback function. This function will be called to process, store or transmit
measurements for each finished frequency sweep.

int my_cb(const struct spectrum_sweep_config *sweep_config, int
timestamp, const int16_t data_list[]) {

...

}

4. Setup the hardware. VESNA library automatically detects and registers the radio hardware
connected to the wireless sensor node, so this step is not normally required unless
initialization routines have been overridden.

spectrum_add_dev(my_dev);

spectrum_reset();

5. Start spectrum sensing.

spectrum_run(my_dev, &my_config);

Please consult Annex IV for the documentation related to the data structures, types and functions
reported in this section.

5.3.3.2 Signal	 generation	 API	
Below is a list of steps required to use the signal generation API followed by a detailed description of
data types and functions involved.

1. Choose device and a configuration pre-set. VESNA library already contains definitions for
all devices present on SNE-ISMTV. Many configuration pre-sets are also available, covering
most commonly used hardware configurations. Alternatively the developer may choose to
define a new one.

const struct vsnSignalGenerator_device *myDev = ...;

const struct vsnSignalGenerator_deviceConfig *myDeviceConfig = ...;

2. Define a signal transmission for the chosen device and configuration. Configuration
contains for example the central frequency and power for the transmission.

const struct vsnSignalGenerator_txConfig myTxConfig = {

.deviceConfig = myDeviceConfig,

...

};

CREW - FP7 - GA No. 258301 D3.2

 74

3. Setup the hardware. VESNA library automatically detects and registers the radio hardware
connected to the wireless sensor node, so this step is not normally required unless
initialization routines have been overridden.

vsnSignalGenerator_addDevice(myDev);

vsnSignalGenerator_reset();

4. Start transmission.

vsnSignalGenerator_start(myDev, &myTxConfig);

5. Stop transmission.

vsnSignalGenerator_stop(myDev);

Please consult Annex V for the documentation related to the data structures, types and functions
reported in this section.

5.3.4 Register	 level	 access	
At the lowest level all radio hardware used in VESNA based testbeds abstract their configuration in
the form of registers with read- and/or write-access via digital buses. These registers can be used to
reconfigure radio hardware (central frequency, channel filter bandwidth, modulation and demodulation
settings, signal generation, etc.), send data for transmission or retrieve received data, retrieve
measurement results and so on. Additional signals (for example, one or more interrupt lines and
power-down switches) may also exist, depending on radio hardware, but their use is usually optional.

VESNA software library provides low-level functions for each radio architecture used on SNE-
ISMTV hardware. Following is a brief overview of the available functions.

CC-based radios (SNE-ISMTV-TI868, SNE-ISMTV-TI24)

Driver module: vsnccradio.c

Register access functions:
int vsnCC_read (u8 addr)

Read a byte from a radio register.
int vsnCC_write (u8 addr, u8 data)

Write a byte to a radio register.
int vsnCC_readBurst (char addr, char *dataPtr, u16 dataCount)

Read many values from one radio register.
int vsnCC_writeBurst (char addr, const char *dataPtr, u16

dataCount)

Write many values to one radio register.

Hardware reference documents:

Texas Instruments: CC1101, Low-power sub-1GHz RF transceiver

Texas Instruments: CC2500, Single chip low cost low power RF transceiver

UHF receiver (SNE-ISMTV-UHF)

CREW - FP7 - GA No. 258301 D3.2

 75

Driver module: vsntda18219hn.c

Register access functions:
uint8_t vsnTDA18219_readReg (uint8_t reg)

Read a TDA18219 register.
void vsnTDA18219_writeReg (uint8_t reg, uint8_t value)

Write a value to a TDA18219 register.

Hardware reference documents:

NXP Semiconductors: TDA18219HN, Silicon Tuner for terrestrial and cable digital TV
reception, Product datasheet

CREW - FP7 - GA No. 258301 D3.2

 76

6 Conclusion	
This document demonstrates how the CREW project has been optimized in the second year of the
project in terms of testbed functionality, common data collection and storage, the CREW Portal, mix
and match combinations, use of the transceiver API and interfacing with the VESNA based testbeds.

Table 1 in Section 1, in particular, provides a breakdown of how the each of the CREW federated
testbeds and platforms now have most, if not all, of CREW core functionalities. These include the
sharing of baseline functionality information, incorporation and sharing of hardware (/software)
between testbeds, advanced sensing functionality, use of the CREW common data format, definition
of benchmarked scenarios for each of the federation testbeds, the presence of access and usage
information on the CREW Portal, remote open access for experiments that are performed in the
context of the CREW project and usage of other CREW partners, external users and open call
experimenters of the testbed/platform functionalities. This table provides a status report detailing how
each of the testbeds has performed in terms of federation functionality.

This document introduces both the CREW repository, for sharing of experimental data, scripts and
with the greater research community, in line with the common data collection and storage
methodologies outlined in the CREW project description of work.

Table 4, in Section 5 of the document provides an extensive breakdown of the mix and match
combinations performed as part of the interoperability testing work of the CREW project. The table
demonstrates that the amount of device combination was quite extensive (all partners, including open
call partners, having taken part in combination experiments involving at least two other partners) and
should provide users wishing to use the CREW federation with a fair understanding of the sort of
experiments, which are likely to be feasible. The table includes both intra-country and cross-country
component combinations.

Detailed descriptions of the interfaces for transceiver API and the VESNA based testbeds are also
provided as part of the CREW interface design and specification work of CREW.

This document shows how the basic operational platform has developed into a strong CREW
federation, capable of numerous inter- testbed and platform experimental operations and facilitating
functionality far greater than the use of the individual testbeds/platforms independently. The
information provided in this document should prove very useful to experimenters for the second
CREW Open Call as well as other experimenters wishing to make use of the CREW federation’s
capabilities.

CREW - FP7 - GA No. 258301 D3.2

 77

7 References	

[1] “CREW Repository.” [Online]. Available: http://www.crew-project.eu/repository/.

[2] “CREW project common portal.” [Online]. Available: www.crew-project.eu/portal.

[3] “Ettus Research, RF Daughterboards.” [Online]. Available:
https://www.ettus.com/product/category/Daughterboards.

[4] “cOntrol and Management Framework.” [Online]. Available:
http://mytestbed.net/projects/omf.

[5] T. Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar, “OMF: A Control and Management
Framework for Networking Testbeds,” ACM SIGOPS Operating Systems Review, vol. 43, no.
4, p. 54, Jan. 2010.

[6] “Example of OMF within OpenWRT.” [Online]. Available:
https://github.com/nathansamson/OMF-Openwrt.

[7] N. Michailow, S. Krone, M. Lentmaier, and G. Fettweis, “Bit Error Rate Performance of
Generalized Frequency Division Multiplexing,” in 76th IEEE Vehicular Technology
Conference (VTC Fall’12), Québec City, Canada, 3.9., 2012.

[8] “IMEC Sensing Engine User Manual.” [Online]. Available: http://www.crew-
project.eu/sites/default/files/SensingEngine_UserManual.pdf.

[9] A. Dejonghe, S. Pollin, L. Hollevoet, F. Naessens, E. Lopez, P. Raghavan, A. Bourdoux, P.
Van Wesemael, J. Ryckaert, J. Craninckx, and L. Van der Perre, “Versatile Spectrum Sensing
on Mobile Devices?,” in 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum
(DySPAN), 2010, pp. 1–6.

[10] “Rice University WARP Project.” [Online]. Available: http://warp.rice.edu.

[11] M. Ingels, V. Giannini, J. Borremans, G. Mandal, B. Debaillie, P. Van Wesemael, T. Sano, T.
Yamamoto, D. Hauspie, J. Van Driessche, and J. Craninckx, “A 5mm2 40nm LP CMOS 0.1-to-
3GHz multistandard transceiver,” in 2010 IEEE International Solid-State Circuits Conference -
(ISSCC), 2010, pp. 458–459.

[12] “CREW Portal, w-ilab.t Zwijnaarde USRP Iris usage.” [Online]. Available: http://www.crew-
project.eu/content/usrp2-usage.

[13] P. Van Wesemael, W. Liu, M. Chwalisz, J. Tallon, D. Finn, Z. Padrah, S. Pollin, S. Bouckaert,
I. Moerman, and D. Willkomm, “Robust distributed sensing with heterogeneous devices,” in
Future Network & Mobile Summit, 2012.

[14] J.-H. H. C. Heller, S. Bouckaert, I. Moermann, S. Pollin, P. v. Wesemael, D. Finn, D.
Willkomm, “WInnComm2011 - A Performance Comparison of Different Spectrum Sensing
Techniques.” 2011.

[15] D. Finn, J. Tallon, L. Dasilva, S. Pollin, W. Liu, S. Bouckaert, and J. V. Gerwen,
“Experimental Assessment of Tradeoffs among Spectrum Sensing Platforms,” The Sixth ACM

CREW - FP7 - GA No. 258301 D3.2

 78

International Workshop on Wireless Network Testbeds, Experimental evaluation and
Characterization (WiNTECH ‘11), 2011.

[16] E. Nicollet, S. Pothin, and A. Sanchez, “Transceiver Facility Specification, Wireless
Innovation Forum, 2 February 2009,” SDRF-08-S-0008-
V1_0_0_Transceiver_Facility_Specification.pdf. [Online]. Available:
http://groups.winnforum.org/p/cm/ld/fid=85.

[17] “Ettus Research, UHD - USRP Hardware Driver, 3 July 2012.” [Online]. Available:
http://files.ettus.com/uhd_docs/manual/html/.

CREW - FP7 - GA No. 258301 D3.2

 79

Annex	 I. Getting	 the	 spectrum	 sensing	 hardware	 information	
from	 VESNA	

The following resources allow querying for spectrum sensing hardware present on the node.
GET sensing/deviceList

dev #0, CC1101, 4 configs

Lists all devices present and number of pre-set configurations available for each device.

GET sensing/deviceConfigList

GET sensing/deviceConfigList?devNum=0

dev #0, CC1101, 4 configs:

 cfg #0: CC1101, f_c=868 MHz, BW=400 kHz:

 base: 868299866 Hz, spacing: 199951 Hz, bw: 406250 Hz,

 channels: 127, time: 20 ms

 cfg #1: CC1101, f_c=868 MHz, BW=800 kHz:

 base: 867999729 Hz, spacing: 199797 Hz, bw: 843681 Hz,

 channels: 63, time: 100 ms

 cfg #2: CC1101, f_c=906 MHz, BW=400 kHz:

 base: 905999991 Hz, spacing: 399595 Hz, bw: 421840 Hz,

 channels: 255, time: 20 ms

 cfg #3: CC1101, f_c=906 MHz, BW=800 kHz:

 base: 905999991 Hz, spacing: 399595 Hz, bw: 843681 Hz,

 channels: 255, time: 20 ms

Lists all configurations for a device. If no device number is given, then all configurations are listed for
all devices.

Format of each entry is as follows:

dev #%u, %s

 (1) (2)

 cfg #%u: %s

 (3) (4)

 base: %u Hz, spacing: %u Hz, bw: %u Hz,

 (5) (6) (7)

 channels: %u, time: %u ms

 (8) (9)

Fields (%u - unsigned integer number, represented in decimal notation, %s – free form string):

1. ID of the device, used when referring to it when programming a spectrum sensing task
2. Human-readable name of the device
3. ID of the device configuration pre-set, used when referring to it when programming a

spectrum sensing task
4. Human-readable name of the configuration
5. Central frequency of channel 0
6. Difference in central frequency between two adjacent channels
7. Channel filter bandwidth (note: might be different from channel spacing, meaning that

some configurations have gaps or overlaps between channels)

CREW - FP7 - GA No. 258301 D3.2

 80

8. Total number of channels
9. Tuner settle time in milliseconds

Channel numbers M range from 0 to channel_num – 1. To calculate central frequency for a channel
the following formula can be used:

f_c = channel_base + M * channel_spacing
GET sensing/deviceStatus

GET sensing/deviceStatus?devNum=0

IC : CC2500

Part num : 80

Version : 03

Get the status of all devices, or of one device. The format of the status message is hardware dependent.

GET sensing/activeProgram

dev 0 conf 3 ch 0:1:42

Get the currently active scanning programs. Returns nothing if no scanning program is active at the
time. See sensing/program resource for the description of the format.

GET uptime

1345.234

Returns the uptime of the node (time since last reset) in seconds. This information is useful for
programming tasks in advance.

CREW - FP7 - GA No. 258301 D3.2

 81

Annex	 II. VESNA	 spectrum	 sensing	 setup	

POST sensing/program

length=...

in 13 sec for 60 sec with dev 0 conf 3 ch 0:1:46 to slot 3

in 90 sec for 600 sec with dev 1 conf 4 ch 4:14:250 to slot 4

crc=...

POST data contains one spectrum sensing program per line, maximum 10 lines.

Format of each line is as follows:
in %u sec for %u sec with dev %u conf %u ch %u:%u:%u to slot %u

 (1) (2) (3) (4) (5)(6)(7) (8)

Fields (%u - unsigned integer number, represented in decimal notation):

1. Number of seconds until the start of scanning; the start is relative to the moment of receiving
the request

2. Length of the scan, in seconds
3. ID of device used for scanning
4. ID of configuration used for scanning
5. First channel in the sweep
6. Channel increment
7. Last channel in the sweep
8. Slot on SD card to which the data will be saved (slot must be empty)

Programs must be sorted by increasing start time and their sensing intervals must not overlap. Each
program must have a unique SD card slot number. If any of the lines is invalid, the program is
rejected.
GET sensing/program

in 13 sec for 60 sec with dev 0 conf 3 ch 0:1:46 to slot 3

in 90 sec for 600 sec with dev 1 conf 4 ch 4:14:250 to slot 4

Issuing a GET request to sensing/program resource returns the information in same format as used in
the POST request.

The number of seconds until the start of scanning is re-calculated relative to the reception time of the
GET request, hence the number of seconds until scan is constantly decreasing. When a program is
active, the number of seconds until the start is 0 and the length of the scan is decreased accordingly.
GET sensing/lastSweepBin

GET sensing/lastSweepText

If a sensing activity is currently active, then these resources return the results of the last completed
sweep, in binary and in text form, respectively. The results are RSSI values, expressed in dBm.

The results are stored until a new sensing activity is started.

In the case that a new sensing started and the first set of results is not ready, then these resources
return empty result set.

sensing/lastSweepBin returns the results as a 16-bit signed integer data type, with values representing
1/100 dBm values per channel.

sensing/lastSweepText returns the same data formatted as ASCII text, separated with whitespaces.

CREW - FP7 - GA No. 258301 D3.2

 82

In the output, a CRC-32 is returned with the data. The CRC is calculated on the binary representation
of the data, and has 4 bytes. In binary format, the CRC is returned in MSB -> LSB order, while in text
format, a hexadecimal number is appended at the end of the line

POST sensing/quickSweepBin

POST sensing/quickSweepText

length=...

dev 1 conf 4 ch 4:14:250

crc=...

Perform a quick sweep with a given device, configuration and channels. If performing the sweep
would require more than 1.5 seconds to completion an error is returned instead of results.

The difference between the binary and text version is the format of the returned results:

sensing/quickSweepBin returns the results as a 16-bit signed integer data type, with values
representing 1/100 dBm values per channel.

sensing/lastSweepText returns the same data formatted as ASCII text, separated with whitespaces.

In the output, a CRC-32 is returned with the data. The CRC is calculated on the binary representation
of the data, and has 4 bytes. In binary format, the CRC is returned in MSB -> LSB order, while in text
format, a hexadecimal number is appended at the end of the line

CREW - FP7 - GA No. 258301 D3.2

 83

Annex	 III. Retrieving	 the	 spectrum	 sensing	 measurements	
from	 VESNA	

GET sensing/slotInformation?id=0

size=0
version=0
status=EMPTY
crc=0

Retrieves meta-data about spectrum sensing measurements stored in a SD card slot.

size=%u (1)

version=%u (2)

status=(EMPTY | INCOMPLETE | COMPLETE | UNDEFINED) (3)

crc=%u (4)

Fields (%u - unsigned integer number, represented in decimal notation):

1. Size of stored data, in bytes
2. Uptime of the node in seconds at the time of writing data to the SD card.
3. Status of the slot: EMPTY – the slot does not contain any data and is ready to be used in a

new measurement, INCOMPLETE – data is currently being written to the slot, COMPLETE –
measurement results have been successfully written to the slot and are ready for retrieval,
UNDEFINED – an unexpected value.

4. CRC of data in the slot.

GET sensing/slotDataHeader?id=0

{ "sensingStart" : "1325970241",

 "sensingEnd" : "1325970242",

 "deviceNumber" : "0",

 "deviceName" : "CC2500",

 "configNumber" : "0",

 "configName" : "CC2500, f_c=2400 MHz, BW=400 kHz, 10
samples averaged",

 "channelStart" : "0",

 "channelStep" : "1",

 "channelStop" : "10" }

Retrieves configuration used for spectrum sensing measurements stored in a SD card slot. String is
formatted as a JSON document.

Fields:

• sensingStart: internal clock at the start of measurement (in seconds)
• sensingEnd: internal clock at the end of measurement (in seconds)
• deviceNumber: ID of device used for scanning
• deviceName: Name of device used for scanning
• configNumber: ID of configuration used for scanning
• configName: Name of configuration used for scanning
• channelStart: First channel in the sweep
• channelStep: Channel increment

CREW - FP7 - GA No. 258301 D3.2

 84

• channelStop: Last channel in the sweep

GET sensing/slotDataBinary?id=0&start=45&size=200

Reads block of data from a slot.

Parameters:

• id: SD card slot to read from
• start: Offset of the block, in bytes from the start of the data
• size: length of the block to read, in bytes

Result is binary data in the format described above. The node will send at most 512 bytes of data in
one request. Errors are signaled with “error:”; in this case no data is returned.

In the output, CRC-32 is returned with the data. The CRC is returned as a 4-byte value in MSB ->
LSB order appended at the end

CREW - FP7 - GA No. 258301 D3.2

 85

Annex	 IV. VESNA	 Spectrum	 Sensing	 C	 API	 documentation	
DATA STRUCTURE DOCUMENTATION

spectrum_dev Struct Reference

Description of a spectrum sensing device.
#include <spectrum.h>

Data Fields

const char * name

Name of the device.

struct spectrum_dev_config *const * dev_config_list

List of configuration pre-sets supported by this device.

int dev_config_num

Length of dev_config_list.

spectrum_dev_reset_t dev_reset

Function to reset the device.

spectrum_dev_setup_t dev_setup

Function to setup a spectrum sensing sweep.

spectrum_dev_run_t dev_run

Function to start a spectrum sensing sweep.

spectrum_dev_status_t dev_status

Function to query the status of the device.

const void * priv

Opaque pointer to a device-specific data structure.

spectrum_dev_config Struct Reference

Configuration pre-set for a spectrum sensing device.
#include <spectrum.h>

Data Fields

const char * name

Name of the pre-set.

unsigned int channel_base_hz

Center frequency of the first channel, in Hz.

int channel_spacing_hz

Difference between center frequencies of two adjacent channels, in Hz.

int channel_bw_hz

Bandwidth of a channel, in Hz.

int channel_num

CREW - FP7 - GA No. 258301 D3.2

 86

Number of channels.

int channel_time_ms

Time required for detection per channel, in milliseconds.

const void * priv

Opaque pointer to a device-specific data structure.

Detailed Description

Configuration pre-set for a spectrum sensing device.

Minimum possible central frequency:

f_cmin = channel_base

Maximum possible central frequency:

f_cmax = channel_base + (channel_num - 1) * channel_spacing

Resolution bandwidth:

resolution_bw = channel_bw

Full band sweep time:

sweep_time = channel_time * channel_num

Field Documentation

int spectrum_dev_config::channel_time_ms

Time required for detection per channel, in milliseconds.

Approximate number - accurate timestamps are returned with measurement results.

spectrum_sweep_config Struct Reference

Description of a frequency sweep.
#include <spectrum.h>

Data Fields

struct spectrum_dev_config * dev_config

Device configuration pre-set to use.

int channel_start

Channel of the first measurement.

int channel_step

Increment in channel number between two measurements.

int channel_stop

Channel of the one after the last measurement.

spectrum_cb_t cb

Callback function.

FILE DOCUMENTATION

CREW - FP7 - GA No. 258301 D3.2

 87

VESNALib/inc/spectrum.h File Reference

Common API for various spectrum sensing hardware.
#include <string.h>

#include <stdint.h>

Data Structures

struct spectrum_sweep_config

Description of a frequency sweep.

struct spectrum_dev_config

Configuration pre-set for a spectrum sensing device. s

truct spectrum_dev

Description of a spectrum sensing device.

Defines

#define E_SPECTRUM_STOP_SWEEP 1

#define E_SPECTRUM_OK 0

#define E_SPECTRUM_INVALID -1

#define E_SPECTRUM_TOOMANY -2

#define SPECTRUM_MAX_DEV 10

Maximum number of spectrum sensing devices supported.

Typedefs

typedef int(* spectrum_cb_t)(const struct spectrum_sweep_config *sweep_config, int
timestamp, const int16_t data_list[])

Callback function called by spectrum_run() for each completed sweep.

typedef int(* spectrum_dev_reset_t)(const void *priv)

Function to reset the device.

typedef int(* spectrum_dev_setup_t)(const void *priv, const struct spectrum_sweep_config
*sweep_config)

Function to setup a spectrum sensing sweep.

typedef int(* spectrum_dev_run_t)(const void *priv, const struct spectrum_sweep_config
*sweep_config)

Function to start a spectrum sensing sweep.

typedef int(* spectrum_dev_status_t)(const void *priv, char *buffer, size_t len)

Function to query the status of the device.

Functions

int spectrum_add_dev (const struct spectrum_dev *dev)

Register a new spectrum sensing device to the system.

int spectrum_reset (void)

Reset all spectrum sensing devices.

int spectrum_sweep_channel_num (const struct spectrum_sweep_config *sweep_config)

CREW - FP7 - GA No. 258301 D3.2

 88

Return number of channels for a sweep config.

int spectrum_run (const struct spectrum_dev *dev, struct spectrum_sweep_config
*sweep_config)

Start a spectrum sensing sweep on a device.

int spectrum_status (const struct spectrum_dev *dev, char *buffer, size_t len)

Variables

int spectrum_dev_num

Current number of registered spectrum sensing devices.

struct spectrum_dev * spectrum_dev_list []

Array of registered spectrum sensing devices.

TYPEDEF DOCUMENTATION

typedef int(* spectrum_cb_t)(const struct spectrum_sweep_config *sweep_config, int timestamp,
const int16_t data_list[])

Callback function called by spectrum_run() for each completed sweep.

Interpretation of the data array:

data[n] = measurement for channel m, where

m = channel_start + channel_step * n

n = 0 .. channel_num - 1

Values: 1/100 dBm value, for ex. 100 = 1 dBm, 50 = 0.5 dBm

Parameters:

sweep_config Pointer to the sweep_config struct passed to spectrum_run()

timestamp Timestamp of the measurement in ms since spectrum_run() call

data_list Array of measurements

Returns:

E_SPECTRUM_OK to continue sweep, E_SPECTRUM_STOP_SWEEP to stop
sweep and return from spectrum_run or any other value on error.

typedef int(* spectrum_dev_reset_t)(const void *priv)

Function to reset the device.

Parameters:

priv Pointer to a device-specific data structure

Returns:

E_SPECTRUM_OK on success

typedef int(* spectrum_dev_run_t)(const void *priv, const struct spectrum_sweep_config
*sweep_config)

Function to start a spectrum sensing sweep.

Parameters:

priv Pointer to a device-specific data structure

CREW - FP7 - GA No. 258301 D3.2

 89

sweep_config Pointer to the frequency sweep description

Returns:

E_SPECTRUM_OK on success

typedef int(* spectrum_dev_setup_t)(const void *priv, const struct spectrum_sweep_config
*sweep_config)

Function to setup a spectrum sensing sweep.

Parameters:

priv Pointer to a device-specific data structure

sweep_config Pointer to the frequency sweep description

Returns:

E_SPECTRUM_OK on success

typedef int(* spectrum_dev_status_t)(const void *priv, char *buffer, size_t len)

Function to query the status of the device.

This function fills a caller-allocated string buffer with status information about the device. No
format for the string is specified.

Parameters:

priv Pointer to a device-specific data structure

buffer Pointer to a caller-allocated string.

len Size of the buffer in bytes (at most len bytes will be written to buffer, including
the terminating 0)

Returns:

E_SPECTRUM_OK on success

FUNCTION DOCUMENTATION

int spectrum_add_dev (const struct spectrum_dev * dev)

Register a new spectrum sensing device to the system.

Parameters:

dev Pointer to the device structure to add

Returns:

E_SPECTRUM_OK on success

int spectrum_reset (void)

Reset all spectrum sensing devices.

Returns:

E_SPECTRUM_OK on success

int spectrum_run (const struct spectrum_dev * dev, struct spectrum_sweep_config * sweep_config)

Start a spectrum sensing sweep on a device.

Parameters:

CREW - FP7 - GA No. 258301 D3.2

 90

dev Pointer to the device structure to be used for sweep

sweep_config Pointer to the frequency sweep description

Returns:

E_SPECTRUM_OK on success

int spectrum_status (const struct spectrum_dev * dev, char * buffer, size_t len)

Return status of the device

This function fills a caller-allocated string buffer with status information about the device. No
format for the string is specified.

Parameters:

dev Pointer to the device structure for which to query status.

buffer Pointer to a caller-allocated string.

len Size of the buffer in bytes (at most len bytes will be written to buffer, including
the terminating 0)

Returns:

E_SPECTRUM_OK on success

int spectrum_sweep_channel_num (const struct spectrum_sweep_config * sweep_config)

Return number of channels for a sweep config.

Parameters:

sweep_config Pointer to the frequency sweep description

Returns:

Number of channels in the sweep config

CREW - FP7 - GA No. 258301 D3.2

 91

Annex	 V. VESNA	 Signal	 Generation	 C	 API	 documentation	
DATA STRUCTURE DOCUMENTATION

vsnSignalGenerator_device Struct Reference

Description of a signal generation device.
#include <vsnsignalgenerator.h>

Data Fields

const char * name

Name of the device.

struct vsnSignalGenerator_deviceConfig *const * configList

List of configuration pre-sets supported by this device.

int configNum

Length of configList.

vsnSignalGenerator_resetFunc reset

Function to reset the device.

vsnSignalGenerator_setupFunc setup

Function to setup the transmission.

vsnSignalGenerator_startFunc start

Function to start the transmission.

vsnSignalGenerator_stopFunc stop

Function to stop the transmission.

const void * priv

Opaque pointer to an implementation-specific data structure.

vsnSignalGenerator_deviceConfig Struct Reference

Configuration pre-set for a signal generation device.
#include <vsnsignalgenerator.h>

Data Fields

const char * name

Name of the pre-set.

unsigned int channelBase

Center frequency of the first channel, in Hz.

unsigned int channelSpacing

Difference between center frequencies of two adjacent channels, in Hz.

unsigned int channelBW

Bandwidth of a channel, in Hz.

unsigned int channelNum

CREW - FP7 - GA No. 258301 D3.2

 92

Number of channels.

int txPowerMax

Maximum transmission power, in dBm.

int txPowerMin

Minimum transmission power, in dBm.

unsigned int channelSettleTime

Time required for channel selection, in ms.

const void * priv

Opaque pointer to an implementation-specific data structure.

Detailed Description

Configuration pre-set for a signal generation device.

Minimum possible central frequency:

f_cmin = channelBase

Maximum possible central frequency:

f_cmax = channelBase + (channelNum - 1) * channelSpacing

vsnSignalGenerator_txConfig Struct Reference

Description of a signal transmission.
#include <vsnsignalgenerator.h>

Data Fields

struct vsnSignalGenerator_deviceConfig * deviceConfig

Device configuration pre-set to use.

unsigned int channel

Channel number for transmission.

int power

Transmit power, in dBm.

FILE DOCUMENTATION

VESNALib/inc/vsnsignalgenerator.h File Reference

Common API for various signal generation hardware.

Data Structures

struct vsnSignalGenerator_deviceConfig

Configuration pre-set for a signal generation device.

struct vsnSignalGenerator_txConfig

Description of a signal transmission.

struct vsnSignalGenerator_device

CREW - FP7 - GA No. 258301 D3.2

 93

Description of a signal generation device.

Defines

#define VSNSIGNALGENERATOR_OK 0

#define VSNSIGNALGENERATOR_ERROR -1

#define VSNSIGNALGENERATOR_MAX_DEV 10

Maximum number of signal generation devices supported.

Typedefs

typedef int(* vsnSignalGenerator_resetFunc)(const void *priv)

Function to reset the device.

typedef int(* vsnSignalGenerator_setupFunc)(const void *priv, const struct
vsnSignalGenerator_txConfig *txConfig)

Function to setup the transmission.

typedef int(* vsnSignalGenerator_startFunc)(const void *priv)

Function to start the transmission.

typedef int(* vsnSignalGenerator_stopFunc)(const void *priv)

Function to stop the transmission.

Functions

int vsnSignalGenerator_addDevice (const struct vsnSignalGenerator_device *device)

Register a new signal generation device to the system.

int vsnSignalGenerator_reset (void)

Reset all signal generation devices.

int vsnSignalGenerator_start (const struct vsnSignalGenerator_device *device, const struct
vsnSignalGenerator_txConfig *txConfig)

Start transmission on a device.

int vsnSignalGenerator_stop (const struct vsnSignalGenerator_device *device)

Stop transmission on a device.

Variables

int vsnSignalGenerator_deviceNum

Current number of registered signal generation devices.

struct vsnSignalGenerator_device * vsnSignalGenerator_deviceList []

Array of registered signal generation devices.

TYPDEF DOCUMENTATION

typedef int(* vsnSignalGenerator_resetFunc)(const void *priv)

Function to reset the device.

Parameters:

priv Pointer to a device-specific data structure

CREW - FP7 - GA No. 258301 D3.2

 94

Returns:

VSNSIGNALGENERATOR_OK on success

typedef int(* vsnSignalGenerator_setupFunc)(const void *priv, const struct
vsnSignalGenerator_txConfig *txConfig)

Function to setup the transmission.

Parameters:

priv Pointer to a device-specific data structure

txConfig Pointer to the transmission description

Returns:

VSNSIGNALGENERATOR_OK on success

typedef int(* vsnSignalGenerator_startFunc)(const void *priv)

Function to start the transmission.

Parameters:

priv Pointer to a device-specific data structure

Returns:

VSNSIGNALGENERATOR_OK on success

typedef int(* vsnSignalGenerator_stopFunc)(const void *priv)

Function to stop the transmission.

Parameters:

priv Pointer to a device-specific data structure

Returns:

VSNSIGNALGENERATOR_OK on success

FUNCTION DOCUMENTATION

int vsnSignalGenerator_addDevice (const struct vsnSignalGenerator_device * device)

Register a new signal generation device to the system.

Parameters:

device Pointer to the device structure to add

Returns:

VSNSIGNALGENERATOR_OK on success

int vsnSignalGenerator_reset (void)

Reset all signal generation devices.

Returns:

VSNSIGNALGENERATOR_OK on success

int vsnSignalGenerator_start (const struct vsnSignalGenerator_device * device, const struct
vsnSignalGenerator_txConfig * txConfig)

Start transmission on a device.

CREW - FP7 - GA No. 258301 D3.2

 95

Parameters:

device Pointer to the device structure to use

txConfig Pointer to the transmission description

Returns:

VSNSIGNALGENERATOR_OK on success

int vsnSignalGenerator_stop (const struct vsnSignalGenerator_device * device)

Stop transmission on a device.

Parameters:

device Pointer to the device structure to use

Returns:

VSNSIGNALGENERATOR_OK on success

