
CREW - FP7 - GA No. 258301 D5.2

 1

Cognitive Radio Experimentation World

Project Deliverable D5.2
Initial report on demand-driven federation functionality

Contractual date of delivery: 30-09-2012

Actual date of delivery: 30-09-2012

Beneficiaries: IBBT, IMEC, TCD, TUB, TUD, TCS, EADS, JSI

Lead beneficiary: TUB

Authors: Danny Finn (TCD), Justin Tallon (TCD), Luiz DaSilva (TCD),
Michael Mehari (IBBT), Wei Liu (IBBT), Stefan Bouckaert (IBBT),
Ingrid Moerman (IBBT), Christoph Heller (EADS), Somsaï Thao
(TCS), Alejandro Sanchez (TCS), David Depierre (TCS), Peter Van
Wesemael (imec), Mattias Desmet (imec), Jan Hauer (TUB), Mikolaj
Chwalisz (TUB), Nicola Michailow (TUD), Zoltan Padrah (JSI)

Reviewers: IBBT/TUD

Workpackage: WP5 – Demand Driven Extensions

Estimated person months: 25

Nature: R

Dissemination level: PU

Version 1.0

Abstract: This document describes the initial demand-driven extensions of the CREW federation. The
extensions are an instrument to upgrade the CREW federation with a new set functionality beyond the
basic functionality developed in other CREW work packages. On the one hand they have been derived
in a demand-driven and open way from feedback by CREW core members and their involvement in
the FIRE community – this includes the adoption (and refinement) of the Connectivity Brokerage
framework, the joint development of a common cognitive radio language together with the GENI
initiative and hardware related extensions. On the other hand, extensions and supporting actions have
been a result of the new partners who have joined the CREW project via the first open call (WP7).

Keywords:

cognitive radio, wireless networks, testbed, spectrum sensing, context awareness

CREW - FP7 - GA No. 258301 D5.2

 2

Executive Summary

This document summarizes the initial demand-driven extensions of the CREW federation. It describes
how the federated CREW test facilities have been extended with a first set of new functionality
beyond the basic functionality developed in WP3 and WP4. This functionality has been defined in a
demand-driven and open way based on the gaps identified from (1) feedback on experimentation by
CREW core members and their involvement in the FIRE community as well as (2) external
experimenters who have joined the project as new partners (WP7).

The corresponding CREW Task 5.1 “New functionality” addresses the extension of the CREW
federation and the initial report on these demand-driven extensions is given in this document - the final
report on demand-driven extensions (and FIRE support actions) will be reported in D5.3 [M36].1

One extension of the CREW platform is the adoption (and refinement) of the Connectivity Brokerage
framework, an architecture that enables coordination and cooperation between heterogeneous
networking components, developed at UC Berkeley. This framework now enables CREW
experimenters to integrate their mechanisms-under-test in a specified CR environment and facilitates
experimentation by enabling reuse of CR software components and concepts. In addition, the CREW
involvement in the FIRE community resulted in collaboration between CREW and the GENI
initiative, which manifested in the joint development of a common cognitive radio language.

Furthermore, integration of the following new hardware was identified as a valuable extension to the
CREW federation: integration of low-cost USB spectrum sensing devices into the TWIST testbed,
extension of the TCD testbed with 10 additional nodes and extension of the LTE testbed of TUD with
with 2.1 GHz front-ends. Task 5.1 also covered the necessary actions to support the experiments
carried out by the new project partners who participated in CREW WP7 via the first open call. A
description of these support actions is also reported in this document.

1 Note that this document (D5.2) does not cover the FIRE support actions (other than related to
demand driven extensions), because FIRE support actions are described in D5.1 and D5.3 only.

CREW - FP7 - GA No. 258301 D5.2

 3

List of Acronyms and Abbreviations

6LoWPAN	
 IPv6	
 over	
 Low	
 power	
 Wireless	
 Personal	
 Area	
 Networks	

ADC	
 Analog	
 to	
 Digital	
 Converter	

AGRAC	
 Automatic	
 Gain	
 and	
 Resource	
 Activity	
 Controller	

AI	
 Air	
 Interface	

API	
 Application	
 Programming	
 Interface	

ASIP	
 Application-­‐Specific	
 Instruction-­‐set	
 Processor	

ATSC	
 Advanced	
 Television	
 Systems	
 Committee	

AWGN	
 Additive	
 White	
 Gaussian	
 Noise	

BAN	
 Body	
 Area	
 Network	

BWRC	
 Berkeley	
 Wireless	
 Research	
 Center	

BS	
 Base	
 Station	

BTS	
 Base	
 Transceiver	
 Station	

CAgent	
 Connectivity	
 Agent	

CB	
 Connectivity	
 Brokerage	

CBAN	
 Cognitive	
 Body	
 Area	
 Network	

CIC	
 Cascaded	
 Integrator-­‐Comb	

CoAP	
 Constrained	
 Application	
 Protocol	

CompNet	
 Composite	
 Network	
 Agent	

CORDIC	
 COordinate	
 Rotation	
 DIgital	
 Computer	

COTS	
 Commercial	
 Off-­‐The-­‐Shelf	

CP	
 Cyclic	
 Prefix	

CR	
 Cognitive	
 Radio	

CREW	
 Cognitive	
 Radio	
 Experimentation	
 World	

CSMA	
 Carrier	
 Sense	
 Multiple	
 Access	

DC	
 Direct	
 Current	

DDR	
 RAM	
 Double-­‐Data-­‐Rate	
 Synchronous	
 Dynamic	
 Random	
 Access	
 Memory	

DFE	
 Digital	
 FrontEnd	

DIFFS	
 DIgital	
 Front	
 end	
 For	
 Sensing	

DVB-­‐T	
 Digital	
 Video	
 Broadcasting	
 -­‐	
 Terrestrial	

EVA	
 Extended	
 Vehicular	
 A	

FCC	
 Federal	
 Communications	
 Commission	

FDD	
 Frequency	
 Division	
 Duplex	

FER	
 Frame	
 Error	
 Ratio	

FFT	
 Fast	
 Fourier	
 Transformation	

FIR	
 Finite	
 Impulse	
 Response	

FIRE	
 Future	
 Internet	
 Research	
 and	
 Experimentation	
 Initiative	

FPGA	
 Field	
 Programmable	
 Gate	
 Array	

GENI	
 Global	
 Environment	
 for	
 Network	
 Innovations	

GPS	
 Global	
 Positioning	
 System	

GUI	
 Graphical	
 User	
 Interface	

HID	
 Human	
 Interface	
 Device	

ID	
 Identifier	

IO	
 Input/Output	

CREW - FP7 - GA No. 258301 D5.2

 4

IPC	
 Interprocess Communication	

IRIS	
 Implementing	
 Radio	
 In	
 Software	

I/Q	
 In-­‐Phase	
 /	
 Quadrature-­‐Phase	

ISM	
 Industrial	
 Scientific	
 Medical	

LAN	
 Local	
 Area	
 Network	

LTE	
 Long	
 Term	
 Evolution	

MAC	
 Medium	
 Access	
 Control	

NFS	
 Network	
 File	
 System	

NTP	
 Network	
 Time	
 Protocol	

OFDM	
 Orthogonal	
 Frequency	
 Division	
 Multiplexing	

OFDMA	
 Orthogonal	
 Frequency	
 Division	
 Multiple	
 Access	

OS	
 Operating	
 System	

PA	
 Platform	
 Agent	

PC	
 Personal	
 Computer	

PCB	
 Printed	
 Circuit	
 Board	

PCI	
 Peripheral	
 Component	
 Interconnect	

PD	
 Probability	
 of	
 Detection	

PFA	
 Probability	
 of	
 False	
 Alarm	

PLL	
 Phase	
 Locked	
 Loop	

PMD	
 Probability	
 of	
 Missed	
 Detection	

PRB	
 Physical	
 Resource	
 Block	

PSD	
 Power	
 Spectral	
 Density	

PUB	
 Publish	

RF	
 Radio	
 Frequency	

RFIC	
 Radio	
 Frequency	
 Integrated	
 Circuit	

ROC	
 Receiver	
 Operating	
 Characteristics	

RSSI	
 Received	
 Signal	
 Strength	
 Indication	

RTT	
 Round	
 Trip	
 Time	

Rx	
 Receiver	

SDR	
 Software	
 Defined	
 Radio	

SFTP	
 Secure	
 FTP	

SIMD	
 Single	
 Instruction,	
 Multiple	
 Data	

SIR	
 Signal	
 Interference	
 Ratio	

SNR	
 Signal	
 to	
 Noise	
 Ratio	

SUB	
 Subscribe	

SUT	
 System	
 under	
 Test	

TCP	
 Transmission	
 Control	
 Protocol	

TDD	
 Time	
 Division	
 Duplex	

TSMC	
 Taiwan	
 Semiconductor	
 Manufacturing	
 Company	

TVWS	
 Television	
 White	
 Spaces	

TWIST	
 TKN	
 Wireless	
 Indoor	
 Sensor	
 network	
 Testbed	

Tx	
 Transmitter	

UDP	
 User	
 Datagram	
 Protocol	

UML	
 Unified	
 Modeling	
 Language	

UniNet	
 Unified	
 Network	
 Agent	

US	
 Usage	
 Scenario	
 (see	
 D2.1	
 for	
 definition)	

CREW - FP7 - GA No. 258301 D5.2

 5

USB	
 Universal	
 Serial	
 Bus	

USRP	
 Universal	
 Software	
 Radio	
 Peripheral	

VCC	
 Virtual	
 Control	
 Channel	

WARP	
 Wireless	
 Open	
 Access	
 Research	
 Platform	

WLAN	
 Wireless	
 Local	
 Area	
 Network	

WSAP	
 White	
 Space	
 Access	
 Point	

WSD	
 White	
 Space	
 Device	

WSN	
 Wireless	
 Sensor	
 Network	

ZMQ	
 ZeroMQ 	

CREW - FP7 - GA No. 258301 D5.2

 6

Table of Contents

1	
 Introduction .. 8	

2	
 Demand-driven Extensions Derived From Internal Use Cases 9	

2.1	
 Connectivity Brokerage Framework ... 9	

2.1.1	
 Concept ... 9	

2.1.2	
 Connectivity Brokerage in the CREW Project ... 11	

2.1.3	
 Implementation ... 14	

2.1.4	
 Conclusions and Future Work .. 25	

2.2	
 CREW-GENI collaboration: Joint development of a common cognitive radio language 26	

2.2.1	
 Goal of the collaboration .. 27	

2.2.2	
 Approach .. 27	

2.3	
 Hardware-related extensions ... 29	

2.3.1	
 Extension of the TUB testbed .. 29	

2.3.2	
 Extension of the IRIS testbed ... 30	

2.3.3	
 LTE 2.1 GHz front-ends ... 32	

2.3.4	
 Towards UWB and 3G Femtocells .. 32	

3	
 Demand-driven extensions derived from external experiments 34	

3.1	
 Support for the Durham experiment ... 34	

3.1.1	
 Support for the channel sounding measurements in the aircraft cabin environment 34	

3.1.2	
 Support for the channel sounder measurements at TUB .. 34	

3.1.3	
 Support for the channel sounder measurements at IBBT ... 35	

3.1.4	
 Support for the IMEC sensing agent .. 35	

3.1.5	
 TCD support in anechoic chamber experiments .. 35	

3.2	
 Support for the TUIL experiment ... 35	

3.2.1	
 Sensing Engine firmware upgrade ... 36	

3.2.2	
 Measurement results ... 40	

3.3	
 Support for the TECNALIA experiment .. 40	

3.3.1	
 TCS Transceiver Facility API .. 40	

3.3.2	
 Support for the IRIS Platform .. 41	

3.4	
 Support for open call experimentation through implementation of a MAC/Network
Layer in Iris ... 41	

4	
 Conclusions .. 42	

5	
 References .. 43	

6	
 Appendix ... 44	

6.1	
 Support Letter from UC Berkeley ... 44	

CREW - FP7 - GA No. 258301 D5.2

 7

6.2	
 Support Letter from WINLAB, Rutgers University .. 45	

 	

CREW - FP7 - GA No. 258301 D5.2

 8

1 Introduction	

In the CREW project demand-driven extensions are the tool to dynamically adapt the CREW
federation to needs identified during the course of the project. While some of these extensions were
envisioned during the project planning, not all needs were evident at that time. In addition, since
external experimenters were joining the project as a result of open calls during the project course
(M12/M24) a mechanism to extend the project with new functionality to better support these
experimenters was required.

The first set of extensions were identified based on the CREW internal use cases: during the first
months of the project it became apparent that the CREW federation was lacking a framework that
allows experimenters to abstract from certain cognitive radio software components to better
concentrate only on the software components of interest. For example, an experimenter who
investigates a sensing algorithm may not be interested in how/when data is communicated to the
database or how the database is implemented but instead use predefined software components and
interfaces for these tasks. To this end the Connectivity Brokerage framework, an architecture that
enables coordination and cooperation between heterogeneous networking components developed at
UC Berkeley, was adopted and extended for the CREW project (Section 2.1).

In addition, the CREW involvement in the FIRE community resulted in collaboration between CREW
and the GENI initiative. One result envisaged in this collaboration is to realize a common API
(common cognitive radio language) for enabling experiments on top of the CREW cognitive radio
devices. This extension is described in Section 2.2.

Furthermore, a set of new hardware was identified as a valuable addition to the CREW federation. The
selected hardware extends the CREW functionality to enable new or more complex (large-scale)
experiments and thus increases the attractivity of the CREW federation. The new hardware (and the
additional software suppport) are described in Section 2.3.

The last set of demand-driven extensions was derived from external experiments carried out by the
new project partners who joint the CREW project as a result of the first open call (WP7). The resulting
extensios and support actions are described in Section 3; finally, this document is summarized and
concluded in Section 4.

CREW - FP7 - GA No. 258301 D5.2

 9

2 Demand-­‐driven	
 Extensions	
 Derived	
 From	
 Internal	
 Use	
 Cases	

This section describes the extensions that were developed as a result of the shortcomings identified in
the CREW internal use cases.

2.1 Connectivity	
 Brokerage	
 Framework	

The CREW project infrastructure includes a number of different hardware modules for cognitive radio
research, ranging from low cost commercial-of-the-shelf (COTS) units - such as WiSpy USB spectrum
analyzers2 - to more advance sensing solutions like the IRIS platform or IMEC sensing agent. An
experimenter using the CREW facilities may want to involve multiple heterogeneous modules, e.g.
combine spectrum sensing information from different sources; furthermore, an experimenter may want
to abstract from those CR functionalities that are not of primary interest to the investigation. For
example, an experimenter may want to build a database of spectrum sensing data obtained from
WiSpy modules and IMEC sensing agents to see if the combination can improve spectral sensing
performance; but the experimenter may not be interested in how/when data is communicated to the
database or how the database is implemented.

The Connectivity Brokerage (CB) framework [1], developed at UC Berkeley, allows experimenters to
focus their investigations only on the subset of the cognitive radio approaches of interest and
establishes a means for collaboration among different CR entities at different levels of abstraction. The
benefits for the CREW project and potential experimenters are that the CB concept clearly structures
and defines functionality in a CR system. Consequently, experimenters can better focus on / distillate
their individual tasks. In addition, experimenters may use the CB framework to “fill up” the missing
parts of their CR system-under-test (SUT) with generic CB framework components.

In this section we will first explain the concept of the CB framework; we will then identify gaps and
challenges we faced in adapting the framework in the CREW project; afterwards we will describe our
solutions and the main design decisions we made to realize the framework in the CREW project; and
finally we will describe our implementation and explain in which way the CB framework was utilized
in the CREW usage scenarios (WP6).

During Year 2 of the CREW project a collaboration has been established between CREW and UC
Berkeley through various bilateral discussions between CREW and Jan Rabaey from Berkeley
Wireless Research Center (BWRC). BWRC has pioneered the Connectivity Brokerage framework and
is interested in cooperating with the CREW towards prototyping the framework (see support letter in
Appendix 1).

2.1.1 Concept	
 	

As explained in [1] the main goal of Connectivity Brokerage is to provide a general framework that
enables diverse wireless technologies to exchange information and collaborate in a seamless fashion.
This will make joint optimization of the spectrum resources possible.

The strict object-oriented strategy with clear semantics is used to accomplish CB goals. The basic
components of the CB architecture are the Connectivity Agents.

2.1.1.1 Connectivity	
 Agent	
 (in	
 short	
 CAgent)	

CAgent is a generic object that represents a particular interest in the brokerage arena (to stay within
the same terminology). It may represent the interests of a terminal (or a user), a wireless network, or a
cluster of collaborating networks.

Each CAgent, independent of its nature, is characterized by a set of parameters, has a known state
(divided into public and private sections), and supports a set of common functions.

2 http://www.metageek.net/products/wi-spy/

CREW - FP7 - GA No. 258301 D5.2

 10

There exist the following CAgent classes (cf. Figure 1):

Air Interface (AI): abstracts given wirelesses interface, and provides the needed interface and control
knobs for it to work properly with other CAgents.

Platform Agent (PA): represents the interests of a given (mobile/non-mobile) platform within a CB
controlled space. PA CAgent policies and
behavior are strongly influenced by the
preferences and privileges of the platform
owner (such as the networks that he/she is
allowed to connect).

Unified Network Agent (UniNet): represents
a collection of AIs that adhere to a unified set
of wireless communication rules or protocols,
and that jointly pursue a unified optimization
strategy. The most typical scenario for this
would be a homogeneous network of similar
AIs running under a common administration.

Composite Network Agent (CompNet):
represents a collection of UnitNets that are
interested in cooperation or collaboration. In
essence, it is the CompNet CAgent that truly
enables the concept of connectivity brokerage.
By leveraging a high-level understanding of
connectivity resources and needs over multiple
networks, the CompNet enables solutions that exceed what the UniNets on their own can accomplish.
In addition, CompNets enable and support hierarchical structures and therefore improve the scalability
of the system. In its simplest nature, a CompNet just shares information between its component
networks; in its most complex form, it balances the diverse requirements of the networks and trades
off between diverging cost functions and metrics, while adhering to dynamically changing policy
rules.

CAgents may contain the following functionalities (cf. Figure 2):

Repository – An essential requirement for effective cooperation and collaboration is that CAgents
make available (at least partially) to all interested parties information learned, decisions made, and
current state. These parties may be components within the CAgent, or any other CAgent that interacts
with it. This is enabled through a distributed repository structure. Each CAgent will publish part of its
own repository to the global CB repository, making it public. The distributed global repository
constructed in this manner is the backbone of the CB framework and the fundamental component that
enables cooperation and dynamic information exchange among wireless technologies.

Discovery – A cornerstone of the CB concept is the capability to actively learn the properties of the
environment. The discovery function extracts and filters useful information from a massive amount of
data, which can be collected from different levels and layers of the wireless systems. The resulting
information is posted in the repository.

Optimization – The obtained information can be used to optimally configure the system so that
performance goals or other criteria are met within the boundaries of the guiding rules and policies. The
required optimizations are often implemented in a distributed or semi-distributed fashion and therefore
each CAgent should be able to engage in a distributed optimization strategy.

Execution – The outcomes of the optimization process need to be conveyed to the interested parties
and executed in a reliable and equitable fashion. Execution of decisions over distributed systems might
require relatively complex coordinated transactions. This is why this is a fundamental function for
every Connectivity Agent.

Figure 1: Example CAgent (Rabaey, et al., 2010)

CREW - FP7 - GA No. 258301 D5.2

 11

Access control – How information is gathered and disseminated through the system and who is
allowed to actively participate in the automation and management process is subject to rules and trust
mechanisms. Cooperative systems can become a prime target of malicious attackers and the security
and access control aspects need to be explicitly addressed. Authentication of the different CAgents as
well as repository data access control and association processes are part of this function.

Policy Support – Policies set the boundaries and ground rules of the optimization processes. In
contrast to current practice (in which the policy is cast in stone in advance), the policies may vary
dynamically, and the networks should be able to adapt these variations. This is a truly innovative
feature introduced by the CB concept. It is an essential element of the “brokerage” model.

2.1.1.2 Inter-­‐CAgent	
 Communication	

The communication between CAgents is performed over the so-called Virtual Control Channel
(VCC). The CB framework does not specify the details of the VCC, rather it is treated as some
abstract communication channel over which CAgents typically communicate based on the publish-
subscribe interaction scheme. For example, a spectrum sensing device could publish its sensing data
and any number of subscribers could subscribe for the data. Since the VCC is not defined in detail, one
challenge lies in the specification of the VCC, and the possible interaction patterns. This is detailed in
the following chapter.

2.1.2 Connectivity	
 Brokerage	
 in	
 the	
 CREW	
 Project	

With the CB framework CREW experimenters can better structure and focus on their individual tasks.
In addition, experimenters may use the CB framework to “fill up” the missing parts of their CR
system-under-test (SUT) with generic CB framework components. However, to reach this goal the
CREW project has to address a set of challenges: the CB framework exists mostly on a conceptual
level, and while the CB framework defines the architectural components and their functionalities in
detail, the interfaces between components are not specified. This lack of specification refers to (1) the
interface / communication channel between different CAgents as well as (2) the interfaces among the
functionalities within a CAgent (discovery, repository, optimizer, etc.). A CREW instantiation of the
framework thus involved specification of the inter-CAgent as well as intra-CAgent communication in
detail. In the following we list a set of communication requirements and present a specification of the
communication interfaces used within the CREW project.

Figure 2: CAgent functionalities (Rabaey, et al., 2010)

CREW - FP7 - GA No. 258301 D5.2

 12

2.1.2.1 Inter-­‐CAgent	
 Communication	
 (VCC	
 Specification)	

The CB framework defines an abstraction of communication backplane, called the Virtual Control
Channel (or VCC), which can be used to exchange messages among CAgent. According to the CB
architecture CAgents communicate with each other over the VCC using a uniform interface protocol,
however, the architecture leaves the actual implementation of the communication protocol undefined.
We have identified the following requirements that a VCC must meet in the CREW project:

● Enable message exchange among CAgents located on different hosts. We assume that these
hosts are able to connect via the TCP/IP protocol (other types of connectivity, such as
CoAP/UDP/6LowPAN for constrained embedded sensor devices may be considered in future
extensions / CREW Year 3).

● Support publish/subscribe (one producer, many consumers) as well as request/response (one-
to-one communication) interaction pattern among CAgents.

● Allow uniform serialization of messages exchanged among CAgents.
● Support communication bindings for different programing languages (C++, python, Java), so

CAgent implementations can be language-independent.

One initial option that was considered is to use “raw” TCP sockets for inter-CAgent communication as
in a preliminary UCB reference implementation introduced in [2]. However, several features would
have to be added, such as many-to-one communication or message queuing functionality to allow
adequate communication. Instead of using raw TCP connection and add custom features, we have
selected the ZeroMQ3 socket library to provide the CAgents with access to the VCC. ZeroMQ carries
messages across TCP/IP, it allows one-to-many as well as one-to-one connectivity and realizes
pub/sub as well as request-reply interaction patterns. It currently offers binding for 30+ languages
including C, C++, Java, .NET, Python. ZeroMQ is open-source free software and runs on most
operating systems, including Linux, Windows and OS X. It is very scalable and realizes fast message
transportation. These features in combination with the natural decoupling of pub/sub clients and
internal message queuing capabilities make the ZeroMQ socket interface a very suitable abstraction of
the VCC.

While ZeroMQ realizes a socket library to access the VCC, it does not define serialization of messages
(the process of converting a data structure or object state into a format that can be communicated
among different CAgents). However, serialization is a requirement to correctly interpret the (e.g.
CREW spectrum sensing) information on the receiver-side CAgent. We suggest using Google
Protocol Buffers4 to serialize data structures exchanged among CAgents. Protocol Buffers are efficient
because, in contrast to markup languages like XML, they allow to exchange data structures in a
compact binary format. Since CAgents will likely exchange a large number of spectrum sensing
information, efficient data exchange is an important precondition. However, Protocol Buffers are not
self-describing, instead a specification of the message content (schema) has to be known by the
recipient. As future work we plan to extend the CB framework with a device/service discovery
mechanism, which can be used to query the schema (a Proto Definition file (.proto)); until then Proto
Definitions have to be known statically by the involved CAgents. Like the ZeroMQ library Protocol
Buffers are available for a large number of programming languages, such as C++, Java or python.

3 http://www.ZeroMQ.org/
4 http://code.google.com/apis/protocolbuffers/

CREW - FP7 - GA No. 258301 D5.2

 13

Figure 3: Inter-CAgent communication via VCC

Summary: CAgents access the VCC via ZeroMQ pub/sub and request/reply primitives and the
exchanged data structures are serialized via Google Protocol Buffers, which currently have to be
known by the involved CAgents.

2.1.2.2 Intra-­‐CAgent	
 Communication	

Intra-CAgent communication refers to the exchange of information among a CAgent’s functional
blocks (discovery, optimizer, executive, etc.). In general, we believe that these interfaces should
remain implementation-dependent, as the components will be implemented on very different clients
with varying programming languages and concepts; furthermore, for efficiency-reasons, blocks that
are conceptually separate might even be realized in one single software components (e.g. a combined
optimizer and executive object). Still, we formulate a set of guidelines on how to realize the intra-
CAgent information exchange.

The easiest way to exchange data among CAgents functional blocks is via well-defined procedures
(methods/functions calls). This may be the preferred choice if components are implemented in the
same programming language (or language bindings are available). An example may be a write()-
method provided by the Repository object and used by the Discovery object to store spectrum sensing
information in the repository.

However, this mechanism requires that caller and callee have matching requirements relating to the
kind of call execution (asynchronous / synchronous). For example a “write”-method on the Repository
object may be blocking (synchronous), but the caller process (e.g. Discovery object) may require an
asynchronous (non-blocking) write operation. In this case, method-calls are not suitable; instead,
CAgents functional blocks should be implemented as independent stream of instructions that can be
scheduled to run as such by the operating system (i.e. functional blocks are implemented as separate
threads or different processes). In such a case we propose to use ZeroMQ also for intra-CAgent
communication, because ZeroMQ enables efficient interprocess communication (IPC) with implicit
queuing mechanism.

VCC: ZeroMQ + Google protocol
 buffers

CREW - FP7 - GA No. 258301 D5.2

 14

Summary: intra-CAgent information exchange is implementation-specific. If possible, objects
communicate via well-defined procedures (methods/functions calls); whenever decoupled (concurrent)
inter-process communication is required, ZeroMQ library will provide efficient IPC communication.

2.1.3 Implementation	

In this section we describe our implementation of the CB framework structured by the internal CREW
usage scenarios.

2.1.3.1 CREW	
 usage	
 Scenario	
 1	
 (Context	
 awareness)	
 	

In this usage scenario we focus on gathering information on the surrounding spectrum usage and apply
this knowledge to optimize the spectrum usage. To obtain the information on the spectrum usage we
use, amongst others, the IMEC sensing engine, e.g. to measure the power in the DVB-T channels to
tune the spectrum occupancy in the TVWS predicted based on a channel model as described in D6.2
or to improve the coexistence in the ISM band. In Figure 4 we show how the CB terminology applies
to the ISM band scenario.

Figure 4: CB view on context awareness in the ISM band

For the CompNet to be able to optimize the overall performance it needs to be able to control the
different UniNets, which requires a communication link. In a first phase we will focus on the
communication link to and from the sensing engine. Within CREW we have selected the ZeroMQ
layer and Google protocol buffers to implement the communication between different components.
For the sensing engine this requires a layer on top of the existing API that handles the communication
with the ZeroMQ layer and the translation of the Google protocol buffers. The communication with
the sensing engine is bi-directional, configuration and control commands needs to go to the sensing
engine and the measurement results need to go to the component controlling the sensing engine. For
the protocol buffer containing the configuration command we use parameters in the sensing engine

CREW - FP7 - GA No. 258301 D5.2

 15

API5, for the protocol buffer containing the measurement result we foresee a data type with maximum
35328 floating point values, which covers all existing results that can be obtained from the sensing
engine.

2.1.3.2 CREW	
 Usage	
 Scenario	
 2	
 (Robust	
 Cognitive	
 Networks)	

The main objective of this usage scenario is the investigation of the robustness of cognitive radio
solutions in cognitive Sensor Networks (CNSs) in order to achieve a certain QoS, while ensuring non-
interference. Our particular focus is on body area networks (BAN) and building automation sensor
networks. The CB framework provides a means to connect the different networks and components to
exchange information, for example related to spectrum utilization.

Consider a Body Area Network (BAN) entering a building and moving through it. Assume the
building infrastructure to have various wireless devices installed (these may be different technologies).
In order for the BAN to coexist with these devices and maintain minimum mutual interference and
maximum spectral utilization it is necessary for the BAN to be frequency agile or in other words it
should possess cognitive radio abilities. A classic approach would mean the BAN does spectrum
sensing by itself and decides what channel is suitable for it to transmit (local spectrum sensing). For a
body area network, which has strict energy constraints, this approach is very costly to adopt.
Alternatively, sharing spectrum sensing with an existing building automation network can make
spectrum sensing more efficient and avoid energy due to spectrum sensing in the BAN. We call the
interaction between a building automation network and a BAN with the goal to improve spectrum
sensing in the BAN infrastructure-supported spectrum sensing.

In order to realize infrastructure-supported spectrum sensing in a BAN a framework is required that
allows us handle inter-network communication between BAN and building automation sensor network
to exchange sensing information. The framework should be such that it can be implemented in
multiple use cases and is not implementation specific. To this end we adopted the CB framework in
usage scenario 2 (US2) to have the means to experimentally investigate how in improving
cooperation, collaboration and adaptivity of various wireless devices can improve communication
robustness.

To this end we have implemented the CB framework on the TWIST sensor network testbed as well as
on body area networks. The following Figure 5 gives an overview of the involved components:

5 http://www.crew-project.eu/sites/default/files/SensingEngine_UserManual.pdf

CREW - FP7 - GA No. 258301 D5.2

 16

Figure 5: Mapping of US2 Scenario to the CB Architecture

The sensor nodes in the wireless sensor testbed, TWIST, perform spectrum sensing. Each TelosB [3]
TWIST node is realized as a platform CAgent and has a single IEEE 802.15.4 Air interface CAgent
associated with it. Both CAgents are implemented (to large extent, see below) via TinyOS6 [4]
components running on the TelosB nodes. However, as these CAgents have very limited storage
resources, they cannot store the spectrum sensing results. Instead we introduced another layer of
CAgent (a UniNet CAgent) that represents the collection of TWIST sensing nodes. All individual
TelosB nodes publish their spectrum sensing results to the repository of the UniNet CAgent, which
resides on the CREW server, where all data is stored. However, the TWIST sensor nodes are
connected over serial interface (USB) to the TWIST infrastructure. Note that the serial protocol is
TinyOS specific, therefore parts of each sensor node CAgent need to be implemented on a (CREW)
server to connect to the nodes via the TinyOS-specific serial protocol handler (SerialForwarder) and
unmarshal the data. Thus each sensor node CAgent consists of TinyOS components that realize the
main CB functionality (sensing) as well as an object, running on the CREW server, that connects to
exactly one node and provides a ZeroMQ (over TPC/IP) connection to other CB components.

The typical use case for CREW usage scenario 2 is as follows: the TWIST nodes continuously send
spectrum sensing information to the NodeCAgents via the SerialForwarder. Each of the NodeCAgent
sends the sensing information to the UniNet CAgent via the VCC. The UniNet CAgent listens on the
VCC and stores the information learned in a global database handled by the repository of the UniNet
CAgent. When an external BAN enters the network space, it queries to the testbed, expecting a reply
that contains information about which channels in the 2.4GHz band are suitable for it to transmit. The

6 http://tinyos.net

CREW - FP7 - GA No. 258301 D5.2

 17

NodeCAgents forwards the query to the UniNet CAgent, which retrieves information from the
database, executes the CB optimization algorithm and broadcasts optimized result back to the BAN
via the NodeCAgents and the testbed motes.

The CB framework can be expressed well with the object oriented programming paradigm. We
implemented the CB components for CREW US2 in the C++ programming language. Note, however,
that since the VCC (interconnection among CAgents) is language-independent our implementation can
interact with CAgents developed with other programming languages.

In the following we first present the UML diagram of our design, shown in Figure 6. This diagram
focuses mainly on the CAgent base class and its components. Later in Figure 7, we present our class
diagram involving the NodeCAgent (part of our Platform CAgent), which we call
TWISTNodeCAgent and UniNetCAgent, which we call TWISTTestbedCAgent. Note that the RSSI
database that we mentioned in our usage scenario is implemented using MySQL in our
implementation and we use MySQL C++ connector libraries in-order to handle the database.

UML Diagram

The CAgent class in our design has 4 members Repository, Optimizer, Discovery and Executive
(Figure 6). VirtualControlChannel is the basic class that defines ZeroMQ sockets, sets up the
PUB/SUB links of the VCC and provides methods for serializing data (from integer array to protobuf
and vice versa). This may be the base class or a member variable of any CAgent component that needs
VCC support according to the CB framework. For a component needing only single VCC socket, it
can be derived from VCC class (For example - Repository and Executive class) and for a
component needing multiple VCC sockets, it is convenient to make VCC objects as member variables
(for example Discovery class).

Note that there are a number of variables/methods defined for each CAgent block, but not all are
needed for a CAgent of particular type. It depends on how the CAgent blocks are initialized to decide
which functions they utilize. In the following we briefly discuss the methods provided by each of the
CAgent blocks.

CREW - FP7 - GA No. 258301 D5.2

 18

Figure 6: UML Diagram of the CB Implementation for US2

Discovery

This component provides methods for listening for the sensing information over the serial forwarder
(connected to a sensor node) as well as the VCC.

Repository

This component contains the database as a member variable. For TWISTNodeCAgent, we define a
single entry integer array as a dummy database since the sensor nodes do not store sensing data
locally. For TWISTTestbedCAgent, we define a MySQL Database. Repository provides two basic
methods - Read() and Write(). These functions have been made as generic as possible. Read()
function takes one argument which can be any SELECT command in MySQL for reading data from a
table. The Write() function on the other hand, first updates the database and then publishes the
updated information on some VCC endpoint.

We have defined a MySQLDatabase class (not shown in the diagram), that defines insert, update,
delete and retrieve functions for handling MySQL databases using C++. This class is used for
achieving the Read() and Write() functions. If it is decided to utilize the Repository class using a
different database handling mechanism, it can be easily done by defining a new Database class similar
to MySQLDatabase class and providing insert, update, delete and retrieve functions to this class.

The MySQL database, which the Repository handles, basically has two tables. The first one stores
information about the testbed nodes like - node ID, location coordinates, type of platform etc. The
second one stores the RSSI value corresponding to a node ID along with a unix timestamp. This table
not only stores the current RSSI values but also stores a record of previous entries. The number of
backup entries can be controlled by restricting the maximum size of the table that can be afforded.

CREW - FP7 - GA No. 258301 D5.2

 19

Optimizer

The Optimizer has access to the database, which is updated by the Repository. It provides
Optimize() method that calls an optimization algorithm and stores the result in an uint8_t array.
Note that this algorithm is very much implementation specific. In our implementation, there is no
algorithm required in the TWISTNodeCAgent Optimizer. We implemented a simple ‘global
averaging’ algorithm for the TWISTTestbedCAgent Optimizer.

The ‘global averaging’ algorithm is implemented as follows - the user specifies over what time
interval does he want to optimize and then the RSSI values for all channels that fall in that time range
are selected and averaged over all nodes, generating a 2 byte result where each bit corresponds to a
channel in the 2.4GHz ISM band. Bit value 0 corresponds to a congested channel indicating that the
external BAN should not transmit in that channel. It is clear that the algorithm we implement is not
accurate for our usage scenario (as position of the BAN should be taken into account while finding the
optimized result) but is implemented just to demonstrate the usage of the CB framework developed.
Formulating a localized algorithm for optimization surely gives a scope for future work. Naturally,
CREW experimenters can implement more elaborated versions Optimizer algorithms.

Executive

This component provides function for sending different kinds of messages (repository message/
optimizer query/ optimizer reply) over VCC. It also provides function SFSend()to send messages to
the sensor nodes via the TinyOS SerialForwarder.

Our usage scenario demands multiple TWISTNodeCAgents to send data to a single
TestbedCAgent. Similarly we also want all the TWISTNodeCAgents listen to the optimized
message from the same TWISTTestbedCAgent. The following Figure 8 explains how to
implement such fan-in and fan-out using ZeroMQ PUB-SUB sockets.

Figure 7: Class Diagram

CREW - FP7 - GA No. 258301 D5.2

 20

Figure 8: Implementing fan-in and fan-out using ZeroMQ, PUB/SUB sockets

From this we can derive that we need the following VCC support for the CAgent blocks:

Repository : ZMQ_PUB, TCP - (1) connect endpoint

Executive : ZMQ_PUB, TCP - (1) bind endpoint

Discovery : ZMQ_SUB, TCP - (1) connect endpoint and (2) bind endpoint

Optimizer : No need of ZeroMQ support

If IPC is used for Intra-CAgent communication the Optimizer would need ZMQ_SUB, IPC and
ZMQ_PUB, IPC support; Repository would need ZMQ_SUB, IPC support; Executive would
need ZMQ_SUB, IPC support and Discovery would need ZMQ_PUB, IPC support. However,
intra-CAgent in our implementation is realized simply via method-calls.

In the following we list two sets of examples where we explain what parts of our CAgent
implementation react how to which events and which are the interfaces provided.

Example 1: Motes send spectrum sensing information to NodeCAgents

Event Who is in charge? Function

Listen to serial forwarder Discovery of SFListen()

CREW - FP7 - GA No. 258301 D5.2

 21

NodeCAgent

Identify message type as Repository
Message

Discovery of
NodeCAgent

-

Post learned information to
Repository

Discovery of
NodeCAgent

IPCSend() / simple method call

Repository stores information in its
own Database

Repository of
NodeCAgent

UpdateDatabase()

(Implementation Specific)

Repository publishes some part of its
database over VCC

Repository of
NodeCAgent

VCCSend()

Listen to incoming messages over
VCC

Discovery of
TestbedCAgent

VCCListen()

Post learned information to
Repository

Discovery of
TestbedCAgent

IPCSend() / simple method call

Repository stores information in its
own Database

Repository of
TestbedCAgent

UpdateDatabase()
(Implementation Specific)

Repository publishes some part of its
database over VCC

Repository of
TestbedCAgent

VCCSend()

	

Example 2: Sensor nodes send BAN Query to NodeCAgents

Event Who is in charge? Function

Listen to serial forwarder Discovery of
NodeCAgent

SFListen()

Identify message type as Optimizer
query

Discovery of
NodeCAgent

-

Post learned information to Optimizer Discovery of
NodeCAgent

IPCSend() / simple method call

Execute Optimization algorithm (in our
usage scenario this is NULL)

Optimizer of
NodeCAgent

Optimize() (Implementation
Specific)

Pass the optimized message to
Executive

Optimizer of
NodeCAgent

IPCSend() / simple method call

CREW - FP7 - GA No. 258301 D5.2

 22

Send to interested party (in this case it
is higher level CAgent)

Executive of
NodeCAgent

VCCSend()

Listen to incoming messages over
VCC

Discovery of
TestbedCAgent

VCCListen()

Post learned info to optimizer Discovery of
TestbedCAgent

IPCSend() / simple method call
using friend classes

Execute Optimization Algo Optimizer of
TestbedCAgent

Optimize() (Implementation
Specific)

Pass the optimized message to
Executive

Optimizer of
NodeCAgent

IPCSend() / simple method call

Send to interested party (in this case it
is lower level CAgent)

Executive of
NodeCAgent

VCCSend()

Listen to incoming messages over
VCC

Discovery of
NodeCAgent

VCCListen()

Post learned info to optimizer Discovery of
NodeCAgent

IPCSend() / simple method call
using friend classes

Send to interested party (in this case it
is Testbed motes)

Executive of
NodeCAgent

SFSend()

Our implementation can be reused and easily extended by CREW experimenters, but the following
points must be considered while extending our CB based design for a different usage scenario:

● VirtualControlChannel class may require changes in ConvertToProto() and
ConvertFromProto() functions, which depend on the .proto message classes defined.
Apart from this subtle changes like changing PUB socket to a bind endpoint or a connect
endpoint may be required.

● MySQLDatabase is an implementation specific class. The developer might need to modify its
methods for the repository name, table names, table column names and their size. If some
other kind of database is to be managed, it is necessary for the developer to design a similar
class for handling the new database by providing it the necessary retrieve, insert, update and
delete methods.

● The number of VCC sockets required for Repository, Executive and Discovery may
change as per the new implementation requirement. Thus, the constructor initialization of
these blocks will change accordingly.

● If the message format is changed, there may be a need to synchronize the new message format
(may be repository message or optimizer message) with the .proto files and also subtle
changes in the UpdateDatabase() function may be required.

● The Optimizer algorithm is very much implementation specific and changes with usage
scenario.

CREW - FP7 - GA No. 258301 D5.2

 23

● The new scenario may demand the CAgent components to run in parallel on different threads.
In this case, it may be required to introduce IPC (inter-process communication) using ZeroMQ
sockets. In this case the VCC class can be directly used for the same, as just the endpoints now
change from TCP to IPC and the SendProtoBuf() and RecvProtoBuf() functions
remain the same. Note that in this case you may consider changing the name of VCC class to
ZMQLinks or any other suitable name, as IPC is not theoretically a part of VCC.

2.1.3.3 CREW	
 Usage	
 Scenario	
 3	
 (Horizontal	
 resource	
 sharing	
 in	
 ISM	
 bands)	

The CREW US3 involves a predefined home environment, including several WiFi and Bluetooth
devices. Besides the devices for generating traffic, some sensing devices are also deployed to monitor
the environment, such as IMEC sensing agent, WiSpy or USRPs. Finally, a sensor network is
employed to emulate the home automation scenario. One example topology of emulated home
scenario is shown in Error! Reference source not found., where red dot represents the sensor
network. Different scenarios can be defined. In a first scenario the normal sensor network performance
is measured. In a second scenario the sensor nodes are assisted by a distributed heterogeneous sensing
platform for selecting an optimal receive channel and the network performance of the sensor network
is measured again..

Figure 9: Devices in CREW US 3

The collection of experiment results, the set-up and iteration of measurements and the communication
between cognitive sensor network and distributed sensing network are achieved via the CREW
benchmarking frame work.

Scenario 1: Normal sensor network

The component mapping towards the connectivity brokerage for the normal sensor network is
presented in the Figure 10:

• CompNet0 is the w.iLab.t testbed (pseudo-shielded environment)

• UniNet0 represents the sensor network under test. The sensor nodes use Zigbee as the air
interface

CREW - FP7 - GA No. 258301 D5.2

 24

• UniNet1 represents the spectrum sensing engine networks, it may be made up of several sub
UniNets. One sub UniNet1.1 is the IMEC spectrum sensing network. Another sensing
network UniNet1.2 could be USRP spectrum sensing network or WiSpy. Each sub UniNet is a
distributed spectrum sensing network, focusing on different frequency ranges or different
technologies.

By linking together the sub UniNets, a distributed and heterogeneous spectrum sensing engine is
formed. In this first experiment, the spectrum sensing network is only responsible for monitoring the
wireless environment. The sub UniNets 1.1 and 1.2 mainly perform the “Repository” and “Discovery”
functionality. UniNet2 and UniNet3 represent a WLAN network and a Bluetooth network
respectively. The Platform Agents for WLAN network are typically wireless routers and laptops,
while the Platform Agents for Bluetooth network can consist of very diverse devices, e.g. Bluetooth
head sets or smart phones. The AI for UniNet2 and UniNet3 are obviously WiFi respectively
Bluetooth.

	

Scenario 2a: Cognitive sensor network (local sensing)

The easiest way to form a cognitive sensor network is to perform channel evaluation based on local
noise measurements by the sensor nodes themselves. Thus the component mapping of CB stays
basically the same as the none-cognitive network, except that UniNet0 now also implements spectrum
sensing and decision making functionalities.

Scenario 2b: Cognitive sensor network (distributed sensing)

In a more advanced cognitive sensor network setting (see Figure 11), UniNet0 can cooperate with
UniNet1 to get spectrum sensing information from the wireless environment. Thus, an extra
CompNet1 is formed. The functionalities of CompNet1 are administration and communication
between UniNet0 and UniNet1.

In summary, Uninet1.1 and 1.2 perform spectrum sensing measurements with different channels and
gain settings (“Discovery” functionality in the CB concept) and each have their own repository
(“Repository” functionality). Uninet1 combines the spectrum information for its sub Uninets and
further translates the spectrum information into a decision on the optimal sensor network settings
(receive channel settings), equivalent to “Optimizer” functionality. CompNet1 disseminates the
information from UniNet1 to UniNet0 and is hence responsible for the “Executive” functionality in
CB concept.

UniNet1(SensingEngine)

UniNet0
(Sensor
Network)

UniNet1.1

PA0 imec
AI WARP

UniNet1.2

PA0 USRP

XCVR245
0

UniNet2
(WLAN)

UniNet3
(Bluetooth)

PA0

802.15.4

CompNet0(Wilab2Testbed)

Figure 10: Mapping of US3 to CB Framework

CREW - FP7 - GA No. 258301 D5.2

 25

 Due to time limitation we mainly implemented the scenario 2b, where channel allocation is based on
distributed spectrum sensing. Further information is provided in D6.2 section 2.3.1.

JSI Testbed

The VESNA based LOG-a-TEC testbed can support Connectivity Brokerage in a similar manner as
the TWIST testbed described in Sect. 2.1.3.2. The implementations of the Air Interfaces, Platform
Agents, UniNets and CompNet can run on the infrastructure serving the testbed and communicate with
the hardware by using the testbed-specific interface and communication protocol.

For experiments, the same interface can be provided as for the other testbeds in CREW. However, the
implementation of CAgents on VESNA nodes needs a different approach, because the ZeroMQ
protocol, used as transport layer in CREW for inter-CAgent communication, is not supported on
microcontrollers. In case there is a demand for CAgents to run on the devices deployed in the LOG-a-
TEC testbed, various communications protocols can be considered as alternative, for example CoAP,
and the used protocol can then be translated to the standard inter-CAgent protocol transparently.

2.1.4 Conclusions	
 and	
 Future	
 Work	

We have adopted the Connectivity Brokerage (CB) [1] architecture in CREW in order to allow CREW
experimenters to integrate their mechanisms-under-test in a well-specified CR framework and
facilitate experimentation by enabling reuse of CR software components and concepts. To this end we
first analysed and identified the limitations in the CB framework; we then suggested CREW-specific
solutions, namely the use of ZeroMQ library and Google protocol buffers to enable interconnection of
CB objects (VCC) on different hosts and written in different programming languages. We then
described our implementation, which covers different CREW usage scenarios. During this process we
discovered topics for future work:

• Some CREW scenarios involve mobility, it is not clear if the current framework provides
enough support for this (e.g. how the VCC can be maintained when crossing networks).

Figure 11: Mapping of US3 to CB Framework (Distribited sensing)

UniNet1(Sensing Engine)

UniNet0

(Sensor
Network)

UniNet1.1

PA0 imec

AI
WARP

UniNet1.2

PA0 USRP

XCVR245
0

UniNet2
(WLAN)

UniNet3
(Bluetooth)

PA0

802.15.4

CompNet0(w-iLab 2 Testbed)

CompNet1 Cognitive Sensor
Network

CREW - FP7 - GA No. 258301 D5.2

 26

• The CB framework lacks detailed specification of how to react in case e.g. messages are
received over an AirInterface, and their semantic might by unknown by the receiving CAgent
(e.g. such message could be forwarded to a default gateway/higher level CAgent).

• It is not clear if the Publish/Subscribe interaction pattern over the VCC is the optimal solution;
in fact for CREW US2 we identified cases where direct one-to-one communication seems
more efficient. A more systematic investigation is required and a set of guidelines for
selection of interaction patterns seems useful. Furthermore currently TCP/IP communication
is necessary to take part in the CB framework; it has to be analyzed if other solutions may be
used (especially when resource-constrained devices like sensor nodes are used,
UDP/6LoWPAN may be more suitable).

2.2 CREW-­‐GENI	
 collaboration:	
 Joint	
 development	
 of	
 a	
 common	
 cognitive	

radio	
 language	
 	

During Year 2 of the CREW project, a collaboration has been established between CREW and GENI
through various bilateral discussions between CREW and Ivan Seskar from WINLAB /Rutgers
University. WINLAB is one of the leading partners in the GENI COGRADIO7 project. The
collaboration between CREW and GENI has now been formalized (see support letter in Appendix 2),
the actual collaboration will start in October 2012 (Year 3 of the CREW project).

The main motivation for the CREW-GENI collaboration is given by the following observations. Due
to the continuous growth in the number and density of wireless devices, standard wireless solutions
suffer from spectrum bottlenecks and coexistence problems. In order to use the scarce spectral
resources more efficiently, there is a need for more flexible and more intelligent radios, also called
cognitive radios (CR). Today several hardware and software platforms for CR research are available
on the market. Some of these platforms are deployed in experimental CR test facilities like those in the
CREW project or the in the European FP7 GENI COGRADIO project in the US. A few examples of
popular CR platforms deployed in experimental facilities are:

• USRP hardware8 in combination with GNU Radio software9 or the IRIS modular software
platform developed by TCD10

• WARP111
• GENI CRKit12
• IMEC spectrum sensing agent13

Although experimental facilities are open and readily available, the learning threshold for setting up
end executing a CR experiment is often quite high. Each of these complex CR platforms requires
investing a lot of time and effort to get familiar with detailed specifications in order to conduct even

7 http://groups.geni.net/geni/wiki/COGRADIO
8 Ettus Research, https://www.ettus.com/
9 http://gnuradio.org/redmine/projects/gnuradio
10 http://www.crew-project.eu/iris
11 Rice University, http://warp.rice.edu/
12 http://crkit.orbit-lab.org/
13 http://www.crew-project.eu/portal/imecdoc

CREW - FP7 - GA No. 258301 D5.2

 27

the most basic experiment especially on a larger scale (i.e. complex topologies consisting of more than
two nodes).

2.2.1 Goal	
 of	
 the	
 collaboration	

The CREW-GENI collaboration targets the joint development of a common CR language to facilitate
experimental validation of advanced CR solutions. Through the CR language, experimenters will no
longer need to know all technical details and software interfaces of individual CR platforms they plan
to use and as such they can better focus on their individual research goals.

One of the use cases investigated within CREW is distributed heterogeneous spectrum sensing, where
we want to establish a dynamic map of power spectrum density (PSD) via distributed heterogeneous
devices. At the same time, in ORBIT, a range of spectrum sensing solutions were developed to support
opportunistic rendezvous types of CR applications. In the first phase, we therefore aim to design a
common set of CR language statements to configure heterogeneous spectrum sensing devices in view
of collection, processing and dissemination of spectral information. We see two interesting usage
scenarios for distributed spectrum sensing:

(1) spectrum sensing as part of the solution to realize true cognitive networking;
(2) spectrum sensing as an experimentation tool to assess the environment during wireless

experimentation.

A second phase, focused on expanding the CR language to support other types of configurations and
experiments, may be defined later upon completion of the first phase. This would include utilization of
domain knowledge through use of RF, spectrum sensing, cognitive radio as well as system and testbed
ontologies to support semi-automatic and automatic experiment generation.

2.2.2 Approach	

We propose to implement the common CR language implemented on top of Experiment Description
Language (OEDL), which is part of OMF (cOntrol and Management Framework)14. OMF is nowadays
considered as the de facto standard for control, measurement and management of wireless testbeds.
This framework is already used for more than 7 years in the ORBIT testbed15, is one of the GENI
control frameworks 16 as well as primary management platform for the GENI COGRADIO project. In
the CREW project (a part of17) the IBBT test facilities are already controlled with OMF. For other
facilities, like the TWIST testbed @ TUB and the Iris testbed @TCD, OMF is in the roadmap.

We propose to build further on the Connectivity Brokerage (CB) concept [1]. The main goal of CB is
to provide a general framework that enables diverse wireless technologies to exchange information
and collaborate in a seamless fashion. We refer to the CREW internal document
“Working_Document_WP5_Connectivity_Brokerage” for more information on the CB concept and
on how the CB concept can be applied for building a common API for (re)configuring CR nodes.

The following functionalities needs to be supported

14 http://mytestbed.net/
15 ORBIT testbed consists of 400 node indoor facility with variety of radio platform including USRP, USRP2,
WARP and CRKIT, 8 smaller specialized development testbeds with 2 to 8 nodes each and outdoor testbed with
20 nodes spread thought two campuses in NJ.
16 GENI WiMAX meso-scale deployments for wide-area wireless experiments include 10 sites throughout the
US with 17 WiMAX basestations using OMF as their control framework.
17 The IBBT wireless facilities consist of 2 parts: a first part is deployed across three floors of the IBBT office
building in Ghent, Belgium. A second part is located in Zwijnaarde, Belgium, approximately 5 km away from
the office lab. The second location hosts, in addition to standard ISM technologies, also software defined radio
platforms (USRP) and spectrum scanning engines developed by imec. Only the second location is OMF
controlled.

CREW - FP7 - GA No. 258301 D5.2

 28

• Easy set up of the CR platform: This involves developing the OMF management tools for
flashing/programming of the CR hardware (FPGA, microcontroller) and/or installation of the
CR software.

o IBBT plans to provide the OMF tools for setting-up the IMEC sensing agent and the
USRP/IRIS platform

o IMEC will extend sensing engine API to support the Connectivity Brokerage
implementation within CREW in respect to the formatting of the messaging generated
by the sensing engine device

o GENI CRKIT set of OMF tools will be harmonized with CB based API and
implemented OEDL CR language extensions.

o Support will be extended to other platforms including VITA 4918 based peripherals.

• Runtime support of distributed sensing through a common API. To this end a common subset
of relevant reconfigurable parameters for different CR platforms will be identified. This will
allow the at runtime adaptation of reconfigurable parameters, hereby abstracting the
heterogeneity of the underlying hardware and software.

• Development/Adoption of common spectrum sensing archiving format.

The same common CR language will be demonstrated on facilities offered by the GENI COGRADIO
and the CREW project. Envisaged demonstrations are:

• Heterogeneous distributed spectrum sensing as an observation/measurement tool during
wireless experimentation using IMEC spectrum sensing agent, USRP/IRIS and IEEE 802.15.4
radio at IBBT w-iLab.t. Through distributed sensing we plan to assess the wireless
environment during experimentation and detect anomalies. In order to maximize spectrum
occupancy information collected from PSD measurements, it should be possible to reconfigure
sensing devices at runtime.

• On-demand spectrum monitoring facilities for ORBIT testbed. The plan is to offer both on-
line and off-line spectrum sensing and monitoring service to testbed users. In addition to
monitoring, the developed framework will be offered as an experimental platform for further
development of spectrum sensing techniques and applications.

• Multi-site large scale spectrum sensing demonstration using advanced networking capabilities
of GENI and FP7 testbeds as a proof-of-concept infrastructure necessary to support wide area
dynamic spectrum assignment research.

	

	

	

	

	

	

	

	

	

	

	

18 http://www.vita.com/home/VSO/VSO.html

CREW - FP7 - GA No. 258301 D5.2

 29

	

	

	

2.3 Hardware-related extensions

2.3.1 Extension of the TUB testbed

During several CREW experiments we had identified that it would be valuable to monitor the very
crowded 2.4GHz ISM band during CREW experiments. To this end we have added a set of
commercial, low-cost USB spectrum analyzers WiSpy-2.4x to the TWIST testbed. These spectrum
analyzers can be used (1) before an experiment to check RF interference conditions and decide if and
where (what frequency range) to start the experiment; or (2) during an experiment to validate the
experiment conditions (RF interference environment).

The WiSpy devices are connected via USB interface to the “supernodes” of the existing TWIST
testbed infrastructure. The TWIST supernodes are network-attached storage devices that are already
placed in every room of the office building to provide access to the TWIST sensor nodes
(reprogramming, interaction during experiments over a serial channel). A schematic overview of the
involved components can be seen in Figure 12.

Figure 12: Components involved in the WiSpy integration into the TUB testbed

A WiSpy device sweeps the spectrum starting at 2.4 to 2.5 GHz by increasing the center frequency of
a radio receiver by a given step size for a given number of times. The center frequency is held constant
over a configurable time interval. Filtering of the receiver’s output is done with an adjustable filter

CREW - FP7 - GA No. 258301 D5.2

 30

bandwidth. This way the user obtains the signal power for individual frequency ranges with equal
width. The WiSpy is capable of sweeping a range with some thousand steps with a minimal step size
of 23.5 kHz and the filter bandwidth needs to have a minimal value of 53.6 kHz. The dwell time
ranges from 10 µs to 2.55 ms in increments of 10 µs.

The parameters provided during configuration are always accepted however the used values might
differ slightly. Especially the number of samples can be a bit higher or lower than specified. All
effective parameter values are stored together with the sweep data. As only raw samples S will be
stored the power values P need to be calculated using the following simple equation:

P [dBm] = S ⋅ 0.5 - 134.0 [dBm]

In TWIST a supernode is used to manage the operation of a set of (typically 4) sensor nodes and relay
their serial communication channels. A software component developed by TUB, called
“spectrumserver“ enables set and read the parameters of a connected WiSpy and to pass the retrieved
spectrum sweeps on to the TWIST server as well. Spectrumserver consists of several parts written in
C++ of which the device driver, the control channel and the data channel are the most important ones.
Each of them is polled within a control loop and is continuously checked for errors.

Initially the spectrumserver waits for a connection to the control channel over which commands are
received. There are commands to set the parameters of the WiSpy, to start or stop sweeping, to
disconnect and to retrieve actual parameters read from the device. The control channel protocol is text
based and replies with a status code and a message explaining what is happening. A proper command
session begins with setting the parameters, optionally also reading them afterwards and the start
command which includes a port number for the data channel. A stop and disconnect command may
end the session at any time.

The device driver encapsulates the management of the WiSpy and transforms any error into an
exception. As the WiSpy communicates over USB as a Human Interface Device (HID) the open
source library libusb is used to send HID compliant messages. USB 2.0 transfers all messages in
frames with 64 bytes of payload so all sweep messages are received fragmented and passed as a
complete message, which then is fed into the data channel. When the spectrumserver receives the start
command it listens to the given port and once the connection is established it starts reading sweeps
from the WiSpy, which are send over the data channel. As the data channel is more data intensive than
the control channel it operates with a binary protocol, which sends a packet including a time stamp for
each sweep.

Previously the TraceServer on the TWIST testbed only handled dumping output from the sensor nodes
to a file. It has been extended to also control the spectrumservers and dump sweeps from all enabled
supernodes into one file per job. The implementation of the TraceServer involved introducing a new
dump manager, which takes care of job instances, which in turn handles the control routines for each
spectrumserver. All data is dumped into a NFS replicated directory to provide the web server with the
dump files. Finally, a new sensestore was introduced on the web server in analogy to the existing
tracestore. It is responsible for managing all sweep dump files and issuing the control commands for
the whole sensing infrastructure for an extension to the SFTP protocol which connects the web server
to the TWIST server. Naturally the web interface had to be changed too to incorporate the controls for
spectrum sensing and dump file retrieval.

To summarize: a distributed spectrum sensing system utilizing low cost spectrum analyzer hardware
was successfully integrated into the TWIST testbed. This enables users of the testbed to check RF
interference environment and validate their experiment conditions.

2.3.2 Extension of the IRIS testbed
For the Iris testbed the following demand driven extensions were identified and set out in task 5.1:

1. Expansion of the Iris testbed to incorporate additional nodes

2. Incorporation of GPS and GUI functionality

CREW - FP7 - GA No. 258301 D5.2

 31

3. General support / extension of the Iris functionality

The first two of these are discussed here while the third is discussed within Section 3 as part of the
discussion of support for external experimentation and open calls. It must be noted that due to the late
start in the demand driven extension work due to delays in funding, parts of this work are still
ongoing.

2.3.2.1 Expansion	
 of	
 the	
 Iris	
 testbed	
 to	
 incorporate	
 additional	
 nodes	

The Iris testbed was extended to incorporate 10 additional nodes (currently there are 4) and also to
incorporate MAC layer and GUI functionality as shown in the following Figure 13.

.

Figure 13: Extended Iris CREW Testbed

CREW - FP7 - GA No. 258301 D5.2

 32

In order to accommodate the growing interest in IRIS and the testbed, four new nodes were purchased.
This included four DELL T1500 desktops with Intel Xeon 3.4GHz Quad core processors (to allow for
high complexity radio designs) and four USRP N210s. Each of these nodes is connected to the
gateway node in the same fashion as the others to allow remote access. This addition brings the total
nodes available for use by external users up to 8. As with the others, the use of the nodes is managed
by a calendar booking system.

Furthermore all machines in the testbed have been updated and are now running Ubuntu 12.04. Each
also has a separate clonezilla installation for reimaging and a grub option to restore the main partition
from the master image on ctvr-gateway (admin password needed).

2.3.2.2 Incorporation	
 of	
 GPS	
 and	
 GUI	
 functionality	

Work has been carried to create a GUI for IRIS. The purpose of this GUI is to make the IRIS software
radio easier to use and to provide a means of better presenting the functionality and metrics of a radio
in a demo setting. The work on this is ongoing and is not yet available online. Work on the
incorporation of GPS functionality is still ongoing also.

2.3.3 LTE 2.1 GHz front-ends
The LTE testbed has been extended with several 2.1GHz front-ends for the eNB and UEs. This
extension was necessary, because the licenses for 2.6GHz areexpected to be withdrawn by the
respective owners in near future as the commercial exploitation of these frequencies progresses in
Germany.

2.3.4 Towards UWB and 3G Femtocells
For a testbed or federation to become and remain sustainable, one of the crucial criteria is
“technological relevance”, meaning that an experimentation facility should offer those technologies
that are of interest to experimenters. The different CREW facilities already offer access to a wide
range of wireless technologies and software defined radios. Nevertheless, the IBBT w-iLab.t has
studied the possibilities of extending the offering towards UWB and 3G Femtocells:

• There has been a demand for the availability of UWB devices, for use in positioning
experiments. Rather than using such devices only for positioning for a single project, the idea
is to install these devices in the IBBT w-iLab.t. The devices that are likely to be acquired are
shown in Figure 14 below.

CREW - FP7 - GA No. 258301 D5.2

 33

Figure 14: P400 RCM module

As the P400 RCM modules can not only be used for localization but also support 2-way data
transport at a physical layer data rate of 158kbps, they can also be used to form sensor
networks. As such, these devices could be used as interferers to create more realistic network
environments, but could also be used as devices under test in UWB sensor networks. Note that
while the equipment is relevant for CREW, this hardware is not bought using CREW budget.
Parallel funding from Ghent University has been obtained for purchasing UWB devices.

• The interest of SMEs and companies in 3G/4G Femtocells seems to be increasing. Therefore,
recently IBBT has started to explore the possibility to acquire Femtocells and Femtocell
software. The challenge is not necessarily to buy Femtocells, but to acquire femtocells that
allow experimenters to make the necessary changes. In addition, licenses need to be acquired.
There is an ongoing discussion to acquire software and Femtocells via a European research
institute. However, no concrete results can be shared at this moment.

	

CREW - FP7 - GA No. 258301 D5.2

 34

3 Demand-driven extensions derived from external experiments
In this section we describe the extensions and actions that were necessary to support the experiments
carried out by the new project partners who participated in CREW via the first open call (WP7).
However, note that due to the late start of the open call partners, some activities anticipated in
demand-driven extensions will occur in year three.

3.1 Support for the Durham experiment

University of Durham (UDUR) has been supported with the actions described in this section.

3.1.1 Support for the channel sounding measurements in the aircraft cabin environment
An aircraft cabin with its metallic structural components and outside shell is assumed to be a special
environment for electromagnetic wave propagation. On the one hand, the cabin can be seen as a kind
of wave guide for the fields, and on the other hand the great number of reflections will lead to
distinctive frequency selective and fast fading effects. The Airbus A340 cabin mock-up that has been
set up on the premises of EADS Innovation Works enables CREW partners to conduct their wireless
experiments in the environment of an aircraft cabin. Although the cabin mock-up mainly consists of
wooden parts, the coating of all structural components with a metallic foil leads to realistic wave
propagation characteristics. The following figures show the inside and outside view of the mock-up.

The cabin environment is a good test case for the channel sounding activities of the University of
Durham (UDUR). Sounding the aircraft cabin channel would also help to interpret the results of the
internal experiments (cf. D6.2) performed in the aircraft cabin, by knowing the scattering function of
the wireless channel.

The channel sounding activities will be supported by providing University of Durham all required
information about the cabin mock up and by giving them access to the facilities to perform their
measurements. All results and knowledge obtained during the channel sounding campaign will be
transferred and made available for the CREW partners and the internal experiments.

3.1.2 Support	
 for	
 the	
 channel	
 sounder	
 measurements	
 at	
 TUB	

Prof. Salous of University Durham (UDUR) visited TUB during 11th – 13th April 2012 to discuss the
envisioned measurements to be conducted at TUB. During this initial meeting we identified the main
challenges in performing channel sounding experiments in the TUB building. The main goal of the
experiment is to identify the dynamic multipath channel parameters including angle of arrival
information and to understand the benefits of directional sensing and generate a suitable multipath
channel model for a dynamic (movement of people) indoor environment.

To perform the measurements the indoor localization of the channel sounder is necessary. The device
itself is too big to be carried by the mobile robot of the TWIST testbed (TWISTbot), which can roam

CREW - FP7 - GA No. 258301 D5.2

 35

through the building by itself. It was decided to use the robot localization mechanisms and operate the
trolley with channel sounder manually.

We have discussed possible signals that can be used for measurement at TUB as well as in an anechoic
chamber in Durham and in IBBT and decided to use the signals artificially generated by Simulink
model and played by signal generator. We will use common signal types specific to 2.4GHz ISM band
like WLAN, Bluetooth and IEEE802.15.4. With this method it is be possible to generate exactly the
same signal in Durham with their signal generator and at TUB. We have already exchanged the
Simulink models and code necessary for signal generation. It is easy to reuse and replay such signals
and decuples the useful signal data from the hardware.

3.1.3 Support	
 for	
 the	
 channel	
 sounder	
 measurements	
 at	
 IBBT	

Similar to the measurements that are planned at TUB, a measurement session is also planned in the
pseudo-shielded environment of the IBBT w-iLab.t testbed (Zwijnaarde location). Due to construction
works in the Zwijnaarde testbeds where additional air vents were installed (thus altering the
propagation behaviour of the environment), the measurements have been delayed to Fall 2012. The
results of the measurement session at IBBT will be included in the deliverables of open call partner
Durham.

3.1.4 Support	
 for	
 the	
 IMEC	
 sensing	
 agent	

The IMEC sensing engine, both the version using the SCALIDO RFIC [5] and the version using the
WARP19 radio board, is part of the experiment UDUR experiment in the anechoic chamber. To allow
for easy evaluation of the measurement results at the moment the experiment takes place, raw output
samples of the sensing engine have been provided to UDUR in advance. To execute the actual
measurement we foresee to use the existing API, which already has a mode available to store time-
domain samples. If required for the experiment it could be possible to utilize the DDR RAM on the
IMEC sensing engine board to obtain longer signal traces, which would require a software and
firmware update of the sensing engine.

3.1.5 TCD	
 support	
 in	
 anechoic	
 chamber	
 experiments	

TCD will take part in the anechoic chamber experiment in UDUR. USRP equipment from the IRIS
testbed will be used to perform simple energy detection, which will then be combined with similar
readings from other devices in post processing. The CREW common data format will be used for the
output data.

3.2 Support	
 for	
 the	
 TUIL	
 experiment	

	

For the TUIL experiment, a gradual approach was selected to couple the IMEC Sensing Engine to the
hardware from TUIL. In a first step, the software API for the Sensing Engine was adapted to calculate
a power number for the selected channel. Starting from a capture of that part of the spectrum
containing the selected channel, a 128-point FFT is performed. The bins belonging to the selected
channel are then used to calculate a single power number, which is made available for readout. Apart
from implementing the algorithm to calculate the power, support has been given on how to install the
hardware, how to use the custom-made software packages, and some changes to the API have been
made to accommodate the needs of the users. Also, a tutorial has been written on how to configure and
use the Sensing Engine for the TUIL experiment.20

In the second step, the FPGA design on the platform was extended to be able to connect the Sensing
Engine on the hardware level. A special interrupt handling routine has been implemented, which

19 "Rice University WARP Project." Online available: http://warp.rice.edu
20 http://www.crew-project.eu/sites/default/files/SensingEngine_UserManual.pdf

CREW - FP7 - GA No. 258301 D5.2

 36

couples the output from the Digital Frontend for Sensing (DIFFS) chip to a General Purpose IO-pin on
the Sensing Engine platform.

In the third step, a custom made firmware design has been created to perform the power calculations
on the DIFFS chip, this is described in more detail in section 3.2.1. This enables much faster signal
processing than the rather slow calculations in software on the host PC. The new firmware was tested
in simulation and new filter configurations were calculated specially for the demands of the
experiment. As mentioned before, this was expanded with an interrupt controller to output the result of
each run of the experiment. After verifying the new firmware in simulation, the software API was
once again modified to support the new firmware and was tested on the hardware. A verification test
scheme was designed to determine the real-life behavior of the new test platform. After the
implementation and test phase, the new API package was transferred together with instructions on
how to use the new version of the Sensing Engine. Afterwards, support was given to finetune the
Sensing Engine to the needs of the users and for the execution of the experiments.

3.2.1 Sensing	
 Engine	
 firmware	
 upgrade	

A part of the sensing algorithm implemented in the project is detection of energy for 2 and 4 MHz
wide signals transmitted by the USRPs from TUIL. This functionality is implemented on the DIFFS
frontend. The implementation details are explained in the following sections.

3.2.1.1 Hardware	
 architecture	

The digital frontend (DFE) is a component that fits in the radio receiver between the analog frontend
and the basebandprocessing unit. It enables both synchronization and sensing features. For the
implementation of the sensing algorithm, only a subset of the components of DIFFS is used. The
platform overview in the next subsections is focusing on those components. Figure 15 Figure
15depicts the high-level block diagram of the device. The analog frontend, a WARP radio board for
this experiment, is connected to the top input, and received data after synchronization is sent to the
baseband engine from the buffer. The sensing-specific sub-blocks are: the AGRAC, the compensation
block, the flexible filter branch and the SensePro.

	

Figure 15: DFE block diagram

CREW - FP7 - GA No. 258301 D5.2

 37

3.2.1.2 Top-­‐level	
 control	
 and	
 frontend	
 interface	
 (AGRAC)	

The Automatic Gain and Resource Activity Controller (AGRAC) controls the DFE. It serves two
tasks: determining the gain settings of the analog frontend upon reception of a radio signal, and
controlling the enable signals of the other sub-blocks to implement a hierarchical wake-up mechanism.
This principle of hierarchical wake-up exploits the fact that only the blocks consuming minimum
power are always active. For sensing applications, the DFE can work in multiple stages: if no power is
detected by the simple power detection in the AGRAC, more powerful signal processing algorithms on
the SensePro are activated. When the AGRAC detects power, the channel is found to be occupied and
no further sensing is needed. The AGRAC is implemented as an 8-bit microcontroller that is
compatible with an industry-standard C toolflow to ease programming. The core of the processor runs
at the speed of the incoming samples and contains a peripheral that measures the received signal
power and the DC offset.

3.2.1.3 Compensation	
 and	
 filtering	

The incoming samples are first sent through a block that compensates for frontend non-idealities. In
this block, the remaining DC offset is digitally removed and I/Q imbalance compensation is applied.
Subsequently, two parallel filter branches can operate on the data. One filter branch is a power-
optimized set of half-band filters, the other branch is a fully programmable filter branch that supports
down-conversion, band selection, and non-integer rate conversion (Figure 16). All filter blocks are
implemented in full precision, and a quantization selection block after each stage allows the algorithm
designer to select the most relevant bits from the output of the filter. The filter block that is used for
implementing the sensing algorithm for the TUIL experiment is the flexible filter branch.

	

Figure 16: Flexible filter branch block diagram

For implementing the sensing algorithm, the following parameters are used for the flexible filter
branch:

• 4 MHz mode

o CORDIC offset: -2/-1/0/1/2 MHz depending on the requested channel center
frequency. The value is dependant from the sampling frequency, which is 40 MHz in
this case. For example, an offset of -2 MHz corresponds to a CORDIC angle of -2/40
or 38/40. Therefore the hexadecimal equivalent of 0.95 has to be programmed, which
is 0xF3333333 (~ 0.9499999999534).

CREW - FP7 - GA No. 258301 D5.2

 38

o CIC filter: the number of stages is 2, the number of delay elements is 1 and the
decimation factor is 4.

o FIR filter: the filter settings consist of 21 tabs that are to be programmed.

o Resampler: the resampler or interpolator is not used for this mode.

• 2 MHz mode

o CORDIC offset: -2/-1/0/1/2 MHz depending on the requested channel center
frequency (see above).

o CIC filter: the number of stages is 3, the number of delay elements is 1 and the
decimation factor is 4.

o FIR filter: the filter settings consist of 21 tabs that are to be programmed.

o Resampler: the resampler or interpolator is not used for this mode.

3.2.1.4 Synchronization	
 and	
 Sensing	
 Engine	

After passing through the filters, the data enters the SensePro synchronization and sensing engine.
This is an ASIP that contains a 32-way SIMD processor with scalar slot and three accelerator cores
(Figure 3). The SIMD processor is used for all the flexible operations that are required for different
sensing algorithms, such as min/max, averaging and thresholding. The scalar slot is used for loop
control. The accelerator cores handle the tasks that do not map efficiently on the SIMD, such as 128-
point Fourier transform, vector rotation and correlation operations. The correlator is specifically used
for synchronization, as this function needs to happen in a low power fashion for an efficient
hierarchical wake-up of the radio. The SIMD processor data path supports complex data samples and
every SIMD slot is 2x16 bits wide. All vector instructions are targeted towards synchronization and
sensing specific functionality so that the various algorithms can be mapped efficiently. As the
processor only contains a scalar and a SIMD slot, firmware development for the SensePro is fairly
straightforward. Programming is done in assembly. The SensePro runs at the incoming sample speed
and can clock-gate itself when it is waiting for data from the correlator that generates the input vectors
from the input samples. No PLL is used, to reduce the power consumption.

CREW - FP7 - GA No. 258301 D5.2

 39

Figure 17: SensePro block diagram

3.2.1.5 Software	
 implementation	

The DFE is a configurable part. Next to the control parameters for the hardware configuration of the
filters, an important part of the functionality if determined by the software that is running on both
programmable ASIPs: the AGRAC and the SensePro. This section details the software that is mapped
on both cores to implement the sensing functionality.

As the sensing algorithm requires detailed information on the received signal power, the limited power
detection hardware on the AGRAC does not suffice. Hence the deployed strategy is to use the
AGRAC for basic frontend control, and then to activate the SensePro to calculate the required signal
properties.

3.2.1.6 AGRAC	

The AGRAC is running a straightforward algorithm: after reset, it will program the analog frontend to
a fixed gain setting, and then it activates the compensation block, the filters, and SensePro. From that
point on the SensePro is analyzing the incoming (filtered) samples.

3.2.1.7 SensePro	

The SensePro is configured to analyze the incoming samples as follows:

• The correlator core is programmed in pass-through mode, as the calculations will be
performed on the vector slot

• The absolute value of the vector values is calculated on a slot-per-slot basis.
• The maximum result value is determined.

CREW - FP7 - GA No. 258301 D5.2

 40

• If the maximum value is bigger than the programmed threshold, the interrupt signal of the
SensePro is asserted. When the value is smaller than the threshold, the interrupt signal is de-
asserted.

3.2.2 Measurement	
 results	

The sensing engine was connected to a wide band signal generator to verify the operation of the
implementation described in the previous sections. The signal generator was programmed to generate
an OFDM signal with a bandwidth of 2 MHz. The power level of the RF signal was varied from -100
to -20 dBm and 1000 measurements were done for a large number of thresholds between 0 and 3000.
For each combination of input power and threshold we compute the number of measurement values
that exceed the programmed threshold. The results are shown in Figure 18, the X-axis shows the input
power level in dBm, the Y-axis contains the threshold value and the curves indicate the percentage
(25% - blue / 50% - red / 75% black) of measurement results that exceed the programmed threshold
value.

Figure 18: detection performance of sensing engine

All three curves, 25, 50 and 75%, show a very similar trend and are very close together, therefore we
can conclude that we have on/off behaviour in the sensing engine which is the wanted behaviour for
this experiment. This curve can be used as reference by TUIL to select the correct threshold setting
	

3.3 Support	
 for	
 the	
 TECNALIA	
 experiment	

3.3.1 TCS	
 Transceiver	
 Facility	
 API	

Thales Communications & Security (TCS) interaction with TECNALIA was limited to provide a
support document for the Transceiver Facility API software, given in CREW deliverable D3.2 section
5.2, as well as the implementation itself of that programming interface (Transceiver Facility API
reference code) for the widely available and used Ettus Research USRP221 board environment.

21 Ettus Research, https://www.ettus.com/

CREW - FP7 - GA No. 258301 D5.2

 41

From these 2 materials, TECNALIA succeeded in integrated Thales Transceiver Facility API [3]
software for running its CREW experiment.

3.3.2 Support	
 for	
 the	
 IRIS	
 Platform	

Thus far, the support provided by TCD has taken the form of providing instruction on the installation,
set up and development of IRIS to accommodate the first stage of the TECNALIA experimental
implementation. This first implementation was performed in the TECNALIA testbed and made use of
Iris as a means of implementing the algorithm for combining sensing information received by multiple
USRPs operating using the TCS Transceiver Facility API [6]

The following stages will involve implementations within the IRIS testbed in Dublin and will require
strong collaboration and involvement, as well as use of IRIS, the IRIS testbed nodes and other IRIS
testbed equipment. Details of the implementation plans can be found in D7.3.1. At the upcoming
CREW meeting in Durham (October 2012) the second stage of implementation (node migration from
TECNALIA testbed to TCD) will be discussed.

3.4 Support	
 for	
 open	
 call	
 experimentation	
 through	
 implementation	
 of	
 a	

MAC/Network	
 Layer	
 in	
 Iris	

As part of the “General support/extension of the Iris functionality” work of the Iris testbed and in
order to facilitate cognitive network based experimentation within the Iris testbed, work on the
development and implementation of a MAC-Network layer for the Iris SDR has been performed.
There has been large demand for, previously unsupported, network level experimentation within the
Iris testbed, support for which has been needed by both the open call partners (TUIL and TECNALIA)
and numerous external users of the Iris testbed facilities in the CREW federation. This work expands
the CREW federation experimental cognitive network functionalities greatly.

Work is ongoing on the implementation of a carrier-sensing-based medium access control (MAC)
protocol. The following is an abstract from a work recently submitted to Transaction on Vehicular
Technology which outlines the work.

Abstract: Implementation of carrier-sensing-based medium access control (MAC) protocols on
inexpensive reconfigurable radio platforms has proven challenging due to long and unpredictable
delays associated with both signal processing on a general purpose processor (GPP) and the interface
between the RF front-end and the GPP. In this paper, we develop a split-functionality implementation
of a random access carrier sensing MAC, in which some of the functions reside on an FPGA and
others reside in the GPP. We provide an FPGA-based implementation of a carrier sensing block and
develop two versions of a CSMA MAC protocol based upon this block.

We experimentally test the performance of the resulting protocols compared to previously-developed,
Aloha-based MAC protocols in a multihop environment, demonstrating improvements in both
throughput and required frame retransmissions. We crossvalidate these results with a network
simulator with modules modified to reflect the mean and variance of delays measured in components
of the real software-defined radio system.

CREW - FP7 - GA No. 258301 D5.2

 42

4 Conclusions	

In this document we have described the initial demand-driven extensions of the CREW federation. We
explained how the federated CREW test facilities have been extended with a first set of new
functionality which has been defined in a demand-driven and open way based on the gaps identified
from feedback CREW core members and their involvement in the FIRE community as well as external
experimenters who participated in WP7 via the first open call.

To this end we have adopted the Connectivity Brokerage (CB) [1] architecture in CREW in order to
allow CREW experimenters to integrate their mechanisms-under-test in a well-specified CR
framework and facilitate experimentation by enabling reuse of CR software components and concepts.
However, we identified a set of limitations that prevented us from applying the CB framework
directly, in particular the lack of specification for the communication among CB objects. An important
extension carried out in WP5 was therefore the extension of the CB framework and its proof of
concept via adoption in CREW usage scenarios. In addition, the CREW involvement in the FIRE
community resulted in establishing a collaboration between CREW and the GENI initiative in view of
the joint development of a common cognitive radio language.

Furthermore, a set of new hardware was identified as a valuable extension to the CREW federation.
These extensions involved integration of low-cost USB spectrum sensing devices into the TWIST
testbed, extension of the TUD testbed with 10 additional nodes and extension of the LTE testbed of
TUD with with 2.1GHz front-ends.

Finally, we described the extensions and actions necessary to support the experiments carried out by
the new project partners who participated in CREW via the first open call (WP7): for University of
Durham (UDUR) this involved the support for the channel sounding measurements in the aircraft
cabin environment, as well as preparing the channel sounder experiments at the TUB & IBBT testbeds
and the preparation of the experiments in the anechoic chamber at UDUR. The TUIL experiments
were facilitated by supporting adaptation of the API of the IMEC Sensing Engine and extending
tutorials. Finally, the experiments conducted by TECNALIA involved writing a support document for
the Transceiver Facility API software as well as joint preparation of the first stage of the TECNALIA
experimental that involves the IRIS platform.

	

CREW - FP7 - GA No. 258301 D5.2

 43

5 References	

[1] Rabaey, J., Wolisz, A., Ercan, A., Araujo, A., Burghardt, F., Mustafa, S., et al. (2010).
Connectivity Brokerage - Enabling Seamless Cooperation in Wireless Networks.

[2] Parsa, S. B. (2010). Design and Implementation Guideline for the Connectivity Brokerage
Distributed Repository (CBDR). Berkeley Wireless Research Center (BWRC). Available:
https://bitbucket.org/aparsa/connectivitybroker.

[3] Joseph Polastre, R. S. (2005). Telos: enabling ultra-low power wireless research. IPSN '05: Proc.
of the 4th international symposium on Information processing in sensor networks. Los
Angeles, California, US.

[4] P. Levis, D. G.-H. (2005). T2: A Second Generation OS For Embedded Sensor.
Telecommunication Networks Group, Technische Universitaet Berlin.

[5] M. Ingels, V. G. (2010). A 5mm2 40nm LP CMOS 0.1-to-3GHz multistandard transceiver. in
2010 IEEE International Solid-State Circuits Conference ISSCC.

[6] E. Nicollet, S. P. (2009). Transceiver Facility Specification. "SDRF-08-S-0008-
V1_0_0_Transceiver_Facility_Specification.pdf",
"http://groups.winnforum.org/p/cm/ld/fid=85". Wireless Innovation Forum.

CREW - FP7 - GA No. 258301 D5.2

 44

6 Appendix	

6.1 	
 Support	
 Letter	
 from	
 UC	
 Berkeley	

CREW - FP7 - GA No. 258301 D5.2

 45

6.2 Support	
 Letter	
 from	
 WINLAB,	
 Rutgers	
 University	

To: W
Date:

RE: O

This
CREW
coord

1.) E
resou
GEN

2.) Fe
which

3.) Jo
mana
(OED
as we
CREW
exper
instit
WAR

In ad
Engin

The O
Deliv
seska

Since

Ivan
Assoc
WINL
Techn
671 R
North
Tel: +
URL:

Whom it Ma
: March 16, 2

ORBIT/GEN

letter will co
W on the to
dination topi

xperimenta
urce use fo
I/ORBIT re

ederation s
h concurren

oint develo
agement. O
DL) that enab
ell as state-m
W project
rimentation
tutions inclu
RP, GENI CR

ddition, we
neering Con

ORBIT/GEN
very and T
ar@winlab.ru

erely,

Seskar
ciate Directo
LAB, Rutger
nology Cetn

Rt. 1 South
h Brunswick
+1 (732) 932-
: http://ww

ay Concern
2012

NI collaborati

onfirm the in
opic of test
ics have bee

tion suppor
or GENI co
esources.

upport: har
ntly use resou

opment: Bot
MF include
bles efficient
machine bas

on the d
 with heter
uding: USRP
RKit and oth

are also co
nference (GE

NI team at W
Testbed Fra
utgers.edu i

or
rs University

ner of NJ

k, NJ 08902
-6857 ext. 640

ww.winlab.ru

WIN
Tec
Rut
671
Nor

ion with CR

ntention of W
tbed experim
en identified

rt: facilitatin
ommunity

rmonization
urces from b

th sites are
es constantly
t definition a
sed experim
evelopment
rogeneous
P & USRP2

her programm

ommitted to
C) and equiv

WINLAB loo
amework p
if you requir

y

0
utgers.edu

NLAB
hnology Centre of

tgers, The State Uni
 US Route 1
rth Brunswick, NJ 0

REW project

WINLAB, Ru
ment manag
 with CREW

ng experim
as well as

 of existing
both testbeds

e actively u
y evolving
and configur

ment task des
 of a com
CR platform
 with GNU
mable platfo

o preparatio
valent Europ

oks forward
project. Pl
re any furthe

 New Jersey
iversity of New Jer

08902-3390

utgers Univ
gement and

W team:

ment exchang
s CREW u

g interfaces
s.

using OMF
 Experimen
ration of req
scription. W
mmon CR
ms deploye

URadio or Ir
orms.

on of join d
pean Project

 to cooperati
lease feel f
er clarificatio

rsey

73

seskar
ww

ersity to col
d control. T

ge and allo
user commu

to support

 framework
nt Descriptio
quired resou

We plan to w
language

ed in testb
ris, IMEC se

demos for v
t Conference

ion with CR
free to con
ons.

32-932-6857 Ext. 6
Fax: 732-932-68

r@winlab.rutgers.e
ww.winlab.rutgers.e

laborate wit
The followin

owing CREW
unity use o

 experiment

k for testbe
on Languag

urces require
work with th

to facilitat
beds in bot
ensing agen

various GEN
es.

REW's Servic
ntact me a

640
82

edu
edu

th
ng

W
of

ts

ed
ge
ed
he
te
th

nt,

NI

ce
at

