
CREW - FP7 - GA No. 258301 D7.5.4

 1

Cognitive Radio Experimentation World

Project Deliverable D7. 5.4

Showcase of experiment ready (Demonstrator)

Contractual date of
delivery:

31-03-14

Actual date of delivery: 18-04-14

Beneficiaries: WINGS

Lead beneficiary: WINGS

Authors: Dimitrios Karvounas, Andreas Georgakopoulos, Evangelia Tzifa,
Katerina Demesticha (WINGS)

Reviewers: Kostas Tsagkaris (WINGS)

Workpackage: WP7 – External Test Cases

Estimated person months: 2

Nature: R

Dissemination level: PU

Version 1.1

Abstract: The deliverable analyses the showcase for experiment-based validation of control
channels for cognitive radio systems. Elaboration on experiment setup and procedures for the
realization of the showcase is being conducted.

Keywords: Control channels, cognitive radio systems, coverage expansion, capacity expansion,
signalling evaluation, performance evaluation, D2D constructs, mesh networks

!"#$%

CREW - FP7 - GA No. 258301 D7.5.4

 2

REVISION HISTORY

Version Date Author Description

1.0 13/04/2014 WINGS First version of document

1.1 18/04/2014 IMEC Minor revision, final version

CREW - FP7 - GA No. 258301 D7.5.4

 3

Contents	

1! Experimental Environment ... 7!

2! Working Demonstration .. 8!

3! Conc lusion ... 13!

CREW - FP7 - GA No. 258301 D7.5.4

 4

List of Figures

Figure 1 – Experimental Environment (in iMinds) ... 7!

Figure 2 – Protocol Sequence Diagram .. 9!

CREW - FP7 - GA No. 258301 D7.5.4

 5

Executive Summary

This deliverable considers the concept of device-to-device (D2D) communications for the resolutions
of persistent issues of mobile networks. Moreover, the impact of mobility is addressed by using a
mobile robot of the w.iLab-t testbed. Certain procedures for the utilization of various elements of the
testbed and information on the developed software provided by WINGS are included in this
deliverable.

CREW - FP7 - GA No. 258301 D7.5.4

 6

 Table of contents

1! Experimental Environment ... 7!

2! Working Demonstration .. 8!

2.1!Application User Manual ... 9!

2.1.1! Prerequisites ... 9!

2.2!Server User Manual .. 9!

2.3!Client User Manual ... 10!

3! Conclusion ... 13!

CREW - FP7 - GA No. 258301 D7.5.4

 7

1 Experimental	 Environment	
In this experiment, a Mobile Node (MN) that is moving around an area covered by many wireless
Access Points (APs) is considered. The APs are registered (i.e. they send messages with their
capabilities) to the Network Management Entity (NME) that has knowledge of the network topology.
The MN is served by a specific AP and thus, it can have access to various applications (ping, video
streaming, file transfer). Due to the fact that other APs are also transmitting and interfere to the
received signal of the MN, the MN may experience low Quality of Service (QoS) or even go out of
the coverage of the AP. Therefore, the proposed solution is to maintain the connectivity (or to
improve the QoS) of the MN by exploiting the opportunities available because of the presence of
neighboring (fixed) nodes. Specifically, a path is identified that leads to the AP through the exchange
of control messages among the nodes that contain information regarding their status and capabilities
and the most suitable nodes (according to a fitness value) create a wireless mesh network. This
scenario is implemented in the w.iLab-t testbed, where a mobile robot acts as the MN, while the
other nodes of the testbed act as the neighboring nodes and the APs. Each node is enhanced with
Java-based agents that add functionalities according to the role that each node plays (i.e. MN, fixed
node, AP, NME) and also implements the control channel through which the control messages are
exchanged. In the MN, the received signal quality from the AP is monitored and if it drops below a
certain threshold or if the MN loses its connectivity, the procedure of the identification of a path to
the AP through the neighboring nodes is initiated in order to create the mesh network. When the
mesh network is established, the applications mentioned above are executed in the MN in order to
measure their performance (in terms of throughput, delay, jitter, packet drop probability) in relation
with the number of hops and the distance from the node that executes the traffic generation (i.e. the
AP). Therefore in the AP a media and a file server is installed, as well as a Java-based traffic
generator that various parameters can be configured (distribution of the generated packets, transport
protocol (TCP/UDP), packet size, transmission interval, number of sessions, etc.). The installed Java
software enables also the real-time presentation of these statistics.

Figure 1 – Experimental Environment (in iMinds)

To wrap-up, the main objective of the experiment is to evaluate the impact of mobility in the context
of device-to-device (D2D) communications. In this sense, we use one of the mobile robots of the
testbed in order to move them around the playground and thus evaluate the impact to communication
quality (e.g., achieved throughput, packet drop probability, delay etc.). The Chapter 2 describes the
working demonstration.

CREW - FP7 - GA No. 258301 D7.5.4

 8

2 Working	 Demonstration	
In order to test the 802.11s (mesh) network’s performance under various traffic conditions a custom
configurable client – server traffic generator was developed. Since the mesh network maintains the
IP address even after the network topology shifts (i.e. when the robot node is moving) the upper
layers (TCP, UDP) maintain their connection as long as the Data link layer supports it. The
application uses java TCP and UDP connection for the network traffic and has a rich graphical
interface that displays many measureable aspects of the test bed context. These are the results of the
wireless scan process that is being performed every a given interval, the calculation of the
interference in each channel and data plots of the interface Throughput and QoS parameters. This
framework acts as a host for the initial experiment scenario which is to monitor the quality of the
WiFi (Infrastructure mode) network and, if it drops its quality below a given threshold, begin with
the establishment of the mesh network.

This application combines information acquired from the wireless network drivers of the Linux OS,
multithreaded network services and Enterprise java graphics for the best illustration of the output
data. The acquisition of the linux kernel information is performed by invoking the “iwlist” binary via
the Apache commons library. The result is then being stored in custom Wireless Network objects
that are being passed to the application to update the data structures that are being translated to
graphics (tables, plots etc). Another approach is also provided that uses a direct communication
between Java runtime and the linux driver with the assistance of the JNI API. The communication
protocol between the client and the server is a custom protocol that is based on signaling messages
that control the session over a constant TCP connection (through the constant Access Point). This
helps to coordinate the UDP transmission between the two peers with the increased robustness of the
dedicated link. The UDP transmission’s parameters (packet rate, packet size) are passed on the UDP
demon at the initialization procedure and remain constant until the finalization message is received
by the Server (Client-initiated termination).

The Server is a TCP multithreaded server that generates one thread per data session. The initiation of
the data transmission is performed by the client after he has reserved an UDP Socket resource and
communicates the UDP port to the server through the TCP connection. The Server given the
knowledge of the destination IP and Port of the transmission begins initialization of the session
thread. Additional information is also included in the “START” message so as to the packet interval
(packet rate) , the packet size (in bytes) the packet resizing policy (Constant packet size, random
Gaussian packet size) and also the number of packets that will be transmit. The server checks its
internal capacity (which is hard-limited to 100 Sessions/Runtime) and replies with either a success or
a failed message including also the unique identifier of the session (Integer [1-100]). Then the
transmission of UDP packets is being performed until specified otherwise by the Client. The Client,
at the other end of the transmission, begins receiving the UDP packets at the specified UDP socket
resource and delivers them to the session layer when information (delay, throughput) is being
calculated and stored in local variables. When the client realizes that the preset number of packets
has been completed, sends a session termination message through the TCP channel to the server. The
server then stops the UDP transmission, cleans up the resources and replies with an
acknowledgement message that includes the number of sent packets for this session. With this data at
hand, the session application calculates the packet drop probability of the session and completes the
higher layer link report by invoking the session completed callback method.

CREW - FP7 - GA No. 258301 D7.5.4

 9

Figure 2 – Protocol Sequence Diagram

2.1 Application	 User	 Manual	
In this chapter we will enumerate the functionalities of each application and give detailed
information about its execution and prerequisites. As this application has two ends, the client side
and the server side, we will explain the installation and execution procedure in both nodes.

2.1.1 Prerequisites	
Server: The server application is a JavaFX graphical application with network usage requirements.
The subnet in which it is executed must be a static IP network with no NAT or Firewall at any
intermediate node. The required java runtime environment for its execution is JRE7u51 and later in
order to utilize the JavaFX graphical features.

Client: The client application is a JavaFX graphical application with network usage and also script
execution capabilities. For this reason root user capabilities are required for its execution and also
static IP network, no NAT in any intermediate node and JRE7u51 virtual machine. The Operating
system must be Linux based with kernel 2.6.x or later and preferably Ubuntu 8+. Also this
application requires at least one functional wireless card (optimally two) in order to simultaneously
monitor the WiFi channel and also transmit the UDP packets via the other wireless card.

2.2 Server	 User	 Manual	
The server application has a graphical user interface with limited input parameters and a detailed
session overview environment. After running the application (from its runnable .jar file) a user might
be prompt to grant network / firewall permissions. For its optimal operation, the network rights must
be granted in order to act as the TCP listening entity for the network. After that a graphical window
will be revealed with 3 input fields of which only the last is editable (the other two are marked as
deprecated). The editable field is the TCP listening port field at which the user must put the port
number that will be listening for incoming connections. After specifying the port in that field the user
then presses the “START” button and the scene is being transformed to a session overview panel. In
this window an observer can notice all the running UDP sessions, their respective packet counts,
client IP’s and session’s id along with a pie diagram of the server utilization. Closing the application
will result in immediate resource cleanup via the java runtime environment garbage collection and
the end of all sessions. The server application is designed to run in the one end of the mesh network

UDP Socket

TCP Connection

Server Client

TCP Listening

Session Receive Session Send UDP Socket

TCP Listening
.
.

.

Mesh
Network

Channel
.
.

.

.

.

.

Visualization

.

.

.

Limit Reached

Data Statistics

CREW - FP7 - GA No. 258301 D7.5.4

 10

chain in order to monitor the effects of the data link layer transmission to the packet delivery rate at
higher layers.

2.3 Client	 User	 Manual	
The client application is a little more elaborate than the Server application because it is the center of
output data gathering and visualizing. Running this application under Linux environment requires
root privileges in order to execute the bash scripts as super user. After running the application (from
its runnable .jar file) you will be prompt to enter the interface name that you wish to use as the
scanning interface. It is important to put a valid interface name (i.e. wifi1, mesh0) in order to acquire
its local ip which will be required later. Also, it must be noted that using the same interface for mesh
network transmission and scanning will disable its transmission functionalities and cause a 100%
packet drop performance so it is crucial that the “continuous refresh” option is disabled if such a
scenario is in effect. After that the main window of the application will open with three visible areas
: The data table, that continuously displays the latest wireless network information as it derives from
the continuous wireless scanning from the selected wireless interface, the status bar (bottom) that
will report for any problems in any program functions (error in session initiation , runtime exceptions
etc) and finally the options bar that uses JMenu to navigate through the program’s capabilities. There
are four menu’s each containing different commands:

¥ The File menu where the program gives the user the ability to begin capturing the wireless
scan data in the form of serializable objects and write in a save file. Closing the program
while that option is selected will write all the captured objects in that file and it can be
accessed by other software for meta-analytics.

¥ The Action menu, where all the basic actions that can be performed with the program are
stored. The available action are:

o Monitor throughput (downlink, uplink) from a given interface.
o Monitor Channel Quality [0-1] of any selected SSID’s from the table.
o Monitor SINR [varies] of any selected SSID’s from the table.
o Enabling the Monitor Agent, this agent changes the program to an environment

where the user can set a quality threshold value, and the agent automatically
monitors the selected (Connected) SSID in order to perform the mesh network
initialization function and move to the mesh network.

o Enabling /disabling the continuous refresh function that is executing the bash script
(iwlist scan).

o The Start Experiment command which prompts the UDP Session wizard in order to
begin a number of UDP Sessions, bundled in the Experiment Wrapper. We will
analyze this functionality later on.

¥ The View menu, where toggle-buttons are being placed in order to specify what context will
be displayed in the main window. This context may be:

o The Wireless Scan results table (as mentioned before).
o The Interference table which displays the interference (dBm) in each WiFi channel.
o The Experimental results view which has a number of graphical plots for each

different QoS parameter measured during and after the completion of UDP
Experiment.

¥ Finally the “about” menu where credits for the Software developers is being displayed.

The basic operation of the software is the Experiment operation, where the user begins the traffic
generation with the remote Server and then measures the results of the experiment. This occurs upon
selection of the “Start Experiment” action in the Actions menu. The experiment function reveals two
new graphical elements of the program, the right panel which acts as an experiment description input
form with all the parameters that are required to begin the experiment and the left panel which
displays detailed information about each active sessions such as its completion percentage (in the
form of a progress bar), the session name and also some runtime control buttons such as session

CREW - FP7 - GA No. 258301 D7.5.4

 11

pause and session stop button. It must be noted that the left panel will not be displayed when no
sessions are active. The input parameters of the session are basically all the information needed for
the successful execution of a UDP Session with the server. They must be correctly completed by the
user in order to perform various experiments that will display the QoS profile of the link. These
fields are analyzed below:

1. Server destination IP: Here the user must specify the IP which will be used for the TCP
signaling channel establishment. If the Client software is executed in the robot node, it must
be noted that the Ethernet interface will be displayed during the mobility session, therefore
the best link for sustaining the signaling channel would be the Wi-Fi access point (which is
common for both the server and the client).

2. Local UDP IP: Here the user must specify the IP that is designated to the client node during
the mesh network generation. This will solve the interface routing issue and will guide all
the traffic via the mesh network (although alternate path exists via the Ethernet or the Wi-Fi
AP).

3. Number of packets for each session: Here the user must specify the number of packets that
will lead, upon completion, to the termination of the UDP Session. It must be noted that
selecting zero (0) as the number of packets is preset to act as a wildcard for infinite packet
transmission that will be interrupted only by the means of the STOP button in the left panel
of the graphical user interface.

4. Number of sessions for this experiment: Here the user must specify the number of sessions
that he wishes to establish with the remote server. Note that the session generation rate is 1
second + any session establishment delay from 0 to 2000 ms (2 seconds TCP timeout).

5. Packet size type: This enumeration gives the user a choice between CBR (Constant bit rate)
and VBR (Variant Bit Rate) which is emulated by the means of packet payload size
randomization. This software uses the built-in Java Gauss distribution (through the
java.util.Random class) in order to generate random traffic with statistical mean and
variation proportional to the selected packet size.

6. Packet interval (milliseconds): This is required to program the repetitive task of the server
transmission to send a packet every <selected> milliseconds. Reversing the packet interval
leads to the calculation of the packet rate.

7. Packet size (bytes): This field is required in either the CBR or the VBR mode. Reverse
calculation of the UDP, IP and DLL header size has been performed in order to shape the
LAYER 2 throughput to the selected value (as it results from Packet Size * Packet Rate).

Finally, after the user has completed the experiment form he can chose to either close the window,
cancelling the experiment or to start the experiment with the selected options. The first action will be
to check if the user input is of correct system values and if so the experiment will begin generating
sessions and visualizing them in the (now visible) left panel. At the completion of the experiment,
the experiment callback function will be invoked showing the results of each Session in the form of
various QoS charts. These charts are:

¥ Packet drop probability: Statistical packet drop probability calculated as the number of
packets send minus the packets received divided by the same number of packets send.

¥ Mean delay value: The statistical average delay between each consecutive packet received in
the session.

¥ Jitter: The statistical variation (Jitter) of delay between each consecutive successful packet
received by the session.

¥ Average Throughput. The application layer (payload bytes only) average throughput as it
derives from diving the total number of received bytes by the total duration of the session.

CREW - FP7 - GA No. 258301 D7.5.4

 12

These operations, output data and functionalities summarize the usage scenarios of the Client
software we have developed for the experimentation of the Mesh networks and it provides us with
multiple parameters to test in conjunction with the robot mobility aspects and the various mesh
network topologies.

CREW - FP7 - GA No. 258301 D7.5.4

 13

3 Conclusion	
This deliverable considered the utilization of D2D communications for the resolutions of persistent
issues of mobile networks. Moreover, the impact of mobility was taken into account through the
utilization of a mobile robot which is available in the testbed. Certain procedures regarding the
utilization of elements in the testbed were also analysed in the scope of this deliverable.

