
CREW - FP7 - GA No. 258301 D7.6.4

 1

Cognitive Radio Experimentation World

Project Deliverable D7.6.4
Showcase of CNIT experiment

CABIN-CREW: The Wireless MAC Processor over CREW:
Cognitive Access BenchmarkINg in CREW

Contractual date of delivery:

Actual date of delivery:

Beneficiaries:

Lead beneficiary:

31-03-14

18-04-14

CNIT

Authors: Ilenia Tinnirello (CNIT), Pierluigi Gallo (CNIT), Daniele Croce
(CNIT), Fabrizio Giuliano (CNIT), Domenico Garlisi (CNIT),
Michele Gucciardo (CNIT), Francesco Gringoli (CNIT), Nicolò
Facchi (CNIT)

Reviewers: Giuseppe Bianchi (CNIT), Hans Cappelle (IMEC)

Workpackage:

Estimated person months:

Nature:

Dissemination level:

Version

WP7 – Benchmarking the Federation

1.5

R

PU

2.1

Abstract: This deliverable describes the final CNIT showcase. We demonstrate the effectiveness of
the envisioned MAC programming interface for defining and modifying MAC protocols that can be
run on completely different hardware platforms (namely, the commercial Broadcom WiFi card and
the advanced FPGA-based WARP board). The protocols can be interactively defined by means of a
graphical interface and then compiled and injected in two competing nodes. A temporal trace of the
channel idle and busy intervals is acquired for visualizing the programmed medium access
operations. We also show how to control these programming interfaces by defining a MAC protocol
adaptation strategy in OEDL language (to be executed by the Experiment Controller). The program
is devised to improve the performance of WiFi and ZigBee overlapping networks, by introducing an
inter-technology coordination mechanism in case of detection of interference problems.

Keywords: cognitive MAC schemes, MAC adaptation policies, hardware-independent MAC
programming

!"#$%

CREW - FP7 - GA No. 258301 D7.6.4

 2

REVISION HISTORY

Version Date Author Description

1.0 10/04/2014 Fabrizio Giuliano Initial draft with first inputs

2.0 17/04/2014 Ilenia Tinnirello Integrations and revisions

2.1 18/04/2014 Hans Cappelle Minor revision, final version

CREW - FP7 - GA No. 258301 D7.6.4

 3

List of Figures

Figure 1 – Demonstration platform for MAC programming: user interfaces and network nodes. 8	

Figure 2 – Control GUI: Layout of the MAC Program Editor ... 8	

Figure 3 – Output GUI: A channel trace in which it is possible recognize packet transmissions, ACK
transmissions and idle channel intervals. .. 8	

Figure 4 – Demonstration platform for MAC cognitive adaptations: user interfaces, control network
and data network. .. 10	

Figure 5 – Web-based user interface. .. 10	

Figure 6 – Comparison of two channel traces before and after MAC adaptation. 10	

CREW - FP7 - GA No. 258301 D7.6.4

 4

Executive Summary
This document describes the final demonstration planned for showing the integration of the Wireless
MAC Processor architecture in the CREW testbed. The integration has involved two different
planes: the data-plane, enabled by the availability of nodes supporting the WMP interface and able
to change the data transmission mechanisms by specifying high-level hardware-independent
programs; the control-plane built on top of the experiment control infrastructure, for coordinating the
network-wide configuration of the node and collecting measurements.

Our showcase focuses on both the aspects. As far as concerns the demonstration of the
programmable wireless data plane (section 1), we show how to interactively define and modify a
MAC program to be injected in two competing nodes based on different hardware. The medium
access behaviour of the two nodes is captured by the USRP nodes co-located in the remote testbed
for debugging the MAC program directly over the air interface. For facilitating the definition of
MAC protocols, we set-up a graphical programming tool in which the protocol state machine can be
configured by using a classical drag and drop interface.

As far as concerns the complete demonstration of a MAC cognitive cycle (section 2), we propose an
interesting use-case in which two independent technologies, namely WiFi and ZigBee, coexist and
interfere in the same environment. We implement a control logic able to detect the coexistence
problems and the MAC adaptation strategy. Since a programmable MAC architecture is available
also for ZigBee nodes (the SnapMAC architecture [1], developed by other CREW partners), our
control program works on both the ZigBee and WiFi nodes. Coexistence problems are revealed by
monitoring the throughput performance and the error rates of the WiFi nodes. When the interference
problem is detected, the central controller enforces a novel MAC program on the WiFi nodes and
ZigBee nodes, based on a time-division access between the two technologies (i.e. WiFi and ZigBee
nodes are entitled to transmit in different channel slots).

We conclude by remarking how the integration of programmable software platforms with the
advanced sensing and controlling functionalities of the CREW testbed can significantly speed-up
the prototyping of novel wireless protocol solutions.

CREW - FP7 - GA No. 258301 D7.6.4

 5

List of Acronyms and Abbreviations

CABIN Cognitive Access BenchmarkINg
CCA Clear Channel Assessment

CREW Cognitive Radio Experimentation World
DCF Distributed Coordination Function
EC Experiment Controller
GUI Graphical User Interface
ISM Industrial, Scientific and Medical
MAC Medium Access Control
OEDL OMF Experiment Description Language
OMF cOntrol Management Framework
PHY Physical Layer
PU Primary User
SDN Software Defined Networks
STA Station
SU Secondary User
RSSI Receiver Signal Strength Indicator
TDM Time Division Multiplex
USRP Universal Software Radio Peripheral
WARP Wireless open-Access Research Platform
WMP Wireless MAC Processor
XFSM eXtended Finite State Machine

CREW - FP7 - GA No. 258301 D7.6.4

 6

Table of contents

1	 Demonstrating MAC Programming and Portability .. 7	

2	 Demonstrating a MAC Cognitive Cycle ... 9	

3	 Conclusion ... 11	

References ... 11	

CREW - FP7 - GA No. 258301 D7.6.4

 7

1 Demonstrating	 MAC	 Programming	 and	 Portability	
The goal of this demonstration is showing the effectiveness of the Wireless MAC Processor
architecture [2] for implementing MAC protocols defined in terms of high-level programming
languages. We integrated two different prototypes of the Wireless MAC Processor architecture on
the CREW testbed [3]: the prototype working on commercial WiFi cards by Broadcom (already
available before the starting of the project) called WMP-BROADCOM, and the prototype developed
within CABIN-CREW project for the WARP software-defined-radio board called WMP-WARP.

Figure 1 shows the architecture of the demonstration platform, which includes the network
programmable nodes and the user interface available for interacting with the system.

The network is composed by two programmable wireless nodes based on different hardware,
namely WMP-BROACOM STA and WMP-WARP STA, attached to a WMP-BROADCOM AP.

The user interface is given by an input and output GUI, for controlling the demonstration and
visualizing the results. The control GUI provides a set of tools for designing a MAC program
(called MAClet) in terms of state machines, and for compiling the program in a machine-code
(called bytecode) readable by the WMP prototypes. The output GUI is given by a web-interface
connected to a USRP node for sampling the channel idle/busy state and visualizing it in a temporal
trace. Channel traces can be useful for giving an immediate evidence of MAC real-time operation
and re-configuration, without relying on indirect performance figures.

Figure 2 shows the layout of the control GUI organized into two main frames: the left frame,
containing the global parameters of the state machine; the right frame where the graphical state
machine is composed by linking logical states with specific transitions. Each state has a number of
outgoing transitions triggered by the occurrence of events and enabled by the verification of an
optional condition taken from a pre-defined list (i.e. from the WMP programming interface). Using
conditional transitions allows to reduce the state space, since it decouples the actual state of the
program into a logical protocol state (explicitly represented in the transition graph) and a
configuration state (tracking the hardware state and the global program parameters). In our editor, we
chose to implement Mealy state machines, in which the transition action is executed only if the
transition is activated (i.e. upon the occurrence of the events and the verification of the condition).

Figure 3 shows an example of output GUI, where the different RSSI samples captures by the USRP
are organized into a temporal channel trace. Packet and ACK transmissions are identified by RSSI
values much higher than the background noise (about -95dBm). The two different values (-70dBm
and -62dBm) correspond to the different distances between the transmitters and the monitoring
USRP. Moreover, the duration of the sample burst of similar values depends on the frame duration
(thus resulting much longer for the data frames).

For demonstrating the possibility to easily redefine different MAC schemes, we work on incremental
modifications of a simple state machine implementing a traditional contention-based access protocol.
Modifications can be decided run-time, but interesting examples can be: i) modifications of the
contention parameters; ii) changing of random access to deterministic TDM access. The modified
programs will be compiled and reloaded on the two heterogeneous hardware nodes during a run-time
traffic session, while the channel analyser will be used for immediately visualize the channel access
results.

CREW - FP7 - GA No. 258301 D7.6.4

 8

Figure 1 – Demonstration platform for MAC programming: user interfaces and network nodes.

Figure 2 – Control GUI: Layout of the MAC Program Editor

Figure 3 – Output GUI: A channel trace in which it is possible recognize packet transmissions, ACK

transmissions and idle channel intervals.

GUI$%$Controller$

WMP%WARP$(STA)$$
WARP$v3$

WMP%Broadcom(AP)
ALIX$

WMP%Broadcom(STA)
ALIX$

010101001010$
101010010010$
101010010101$
101010101010$

XFSM$ Bytecode$

WMP%editor$ WMP%compiler$

MAClet$
Repository$

185 190 195 200 205 210

−90

−80

−70

−60

−50

−40

R
S

S
I
 [
d
B

m
]

Time [ms]

MAClet switching

MAClet 1
DCF

MAClet 2
TDMA

30 40 50 60 70 80 90 100 110 120 130

−90
−80
−70
−60
−50
−40

RS
SI

 [
dB

m
]

Time [ms]

MAClet − Network Virtualization
OPA OPB OPA OPB

Busy%Gme$Analyzer$

CREW - FP7 - GA No. 258301 D7.6.4

 9

2 Demonstrating	 a	 MAC	 Cognitive	 Cycle	
The goal of this demonstration is exploiting the CABIN-CREW extensions for showing the support
of a whole MAC cognitive adaptation cycle in CREW. We implement a detection and reaction
strategy devised to avoid interference between WiFi and ZigBee technologies on unlicensed ISM
bands. The experiment scenario is configured at the w-iLab.t testbed, with one pair of WMP-
BROADCOM nodes and one pair of interfering ZigBee nodes, running TinyOS and the SnapMAC
driver. For programming the network intelligence and enforcing the control commands, we use the
cOntrol and Management Framework (OMF) and Measurement Library (OML). Although these
frameworks have been designed for the configuration, execution and centralized control of
experiments, they can be effectively used also for network control (as discussed in [4]).

We consider a MAC cognitive cycle in which: i) the sensing phase is implemented by collecting
throughput and error statistics by means of dedicated monitoring applications deployed on the nodes;
ii) the analysis and reasoning phases are performed at the Experiment Controller (EC) by
aggregating data and defining customized events to be fired when inter-technology coexistence
problems arise, iii) the adaptation phase is finally achieved by loading and/or activating inter-
technology TDMA programs on the controlled nodes when needed. ZigBee and WiFi receivers
report the achieved throughput to a central database using the OML framework.

Figure 4 shows the architecture of the demonstration. The network is composed of two WiFi nodes
and two ZigBee nodes; two UDP data sessions are configured on both the links. A wired control
network is used from piloting the nodes: the measurements are sent to the OMF database, while the
control logic is implemented into a OEDL program executed by the EC.

The experiment control interface (web-based) is shown Figure 5. The interface allows to configure
the ZigBee and WiFi traffic rate and to activate the two WiFi links. The same web interface is used
for visualizing the experiment output by plotting the per-technology normalized throughput and the
channel trace captured by the channel analyser.

For demonstrating the MAC cognitive adaptation cycle, we dynamically activate two links (under
different traffic rates) and observe the throughput and channel access variations due the actions
enforced by the experiment controller (EC). Figure 5 shows an example of these adaptations by
comparing two channel traces capture before and after the detection of inter-technology interference.
In absence of coordination, both the technologies experience throughput degradation. One of the
major reasons of this performance degradation is the different granularity at which Clear Channel
Assessment (CCA) samples are collected. The phenomenon is depicted in the top diagram of the
figure, where it is evident that ZigBee frames (identified by an RSSI value of about -88 dBm) last for
about 4 ms and that WiFi and ZigBee transmissions can collide. When the EC detects the problem, it
loads an inter-technology MAC scheme on all the nodes. According to this MAC program, ZigBee
nodes can transmit for a portion of the frame equal to 50 ms, while WiFi nodes can access the
channel in the following 50 ms. The bottom diagram of the figure shows an example of coordinated
channel access. The synchronization mechanism implemented in the program works as follows:
ZigBee nodes autonomously switch between active and idle intervals, while being synchronized to
the ZigBee coordinator. WiFi nodes switch to the activity interval after the detection of a burst of
consecutive ZigBee packets and go to idle at the expiration of a timer.

.

CREW - FP7 - GA No. 258301 D7.6.4

 10

Figure 4 – Demonstration platform for MAC cognitive adaptations: user interfaces, control network and

data network.

Figure 5 – Web-based user interface.

Figure 6 – Comparison of two channel traces before and after MAC adaptation.

Experiment$Controller/
Coordinator$

WMP$Node2$

MAClet$
Repository$

WMP$Node1$

Sensor$node1$ Sensor$node2$

OML$

DATA$

DATA$

MEASUREMENT$

Busy%Gme$Analyzer$

0 20 40 60 80 100 120 140 160
−100

−90

−80

−70

−60 Legacy

RS
SI

 [d
Bm

]

Time [ms]

0 20 40 60 80 100 120 140 160
−100

−90

−80

−70

−60 TDMA

RS
SI

 [d
Bm

]

Time [ms]

−WiFi

−WiFi

−ZigBee

−ZigBee

0 20 40 60 80 100 120 140 160
−100

−90

−80

−70

−60 Legacy

RS
SI

 [d
Bm

]

Time [ms]

0 20 40 60 80 100 120 140 160
−100

−90

−80

−70

−60 TDMA

RS
SI

 [d
Bm

]

Time [ms]

−WiFi

−WiFi

−ZigBee

−ZigBee

CREW - FP7 - GA No. 258301 D7.6.4

 11

3 Conclusion	
The primary goal of our demonstration was the validation of the CABIN-CREW extensions for
supporting MAC cognitive experiments. To this purpose, we developed and integrated several
software tools on top of different hardware facilities already available in the testbed for: i) providing
an high-level interface for defining hardware-agnostic MAC programs in terms of abstract state
machines; ii) providing a OMF-compatible control interface for loading and activating MAC
programs on the testbed programmable nodes.

Our experiments are targeted to demonstrate both the contribution and to enlighten how the joint
exploitation of programmable software platforms and advanced sensing and controlling
functionalities can significantly speed-up the prototyping of novel wireless solutions.

References	
[1] P. De Mil, et al. “snapMac: a Generic MAC/PHY Architecture Enabling Flexible MAC Design.”
Ad Hoc Networks (2014).
[2] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli, “Wireless MAC
Processors: Programming MAC Protocols on Commodity Hardware” IEEE INFOCOM, 25-30
March 2012

[3] Tinnirello, P. Gallo, M. Gucciardo, F. Gringoli, N. Facchi, D. Garlisi, F. Giuliano, Project
Deliverable D7.6.3, “Final report on results of CNIT experiment and user experience”

[4] G. Bianchi, I. Tinnirello, “One Size Hardly Fits All: Towards Context-Specific Wireless MAC
Protocol Deployment.”, in Proc. of ACM Wintech 2013.

