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Abstract: This deliverable describes the final CNIT showcase. We demonstrate the effectiveness of 
the envisioned MAC programming interface for defining and modifying MAC protocols that can be 
run on completely different hardware platforms (namely, the commercial Broadcom WiFi card and 
the advanced FPGA-based WARP board). The protocols can be interactively defined by means of a 
graphical interface and then compiled and injected in two competing nodes. A temporal trace of the 
channel idle and busy intervals is acquired for visualizing the programmed medium access 
operations. We also show how to control these programming interfaces by defining a MAC protocol 
adaptation strategy in OEDL language (to be executed by the Experiment Controller). The program 
is devised to improve the performance of WiFi and ZigBee overlapping networks, by introducing an 
inter-technology coordination mechanism in case of detection of interference problems. 

 

Keywords: cognitive MAC schemes, MAC adaptation policies, hardware-independent MAC 
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Executive Summary 
This document describes the final demonstration planned for showing the integration of the Wireless 
MAC Processor architecture in the CREW testbed. The integration has involved two different 
planes: the data-plane, enabled by the availability of nodes supporting the WMP interface and able 
to change the data transmission mechanisms by specifying high-level hardware-independent 
programs; the control-plane built on top of the experiment control infrastructure, for coordinating the 
network-wide configuration of the node and collecting measurements. 

Our showcase focuses on both the aspects. As far as concerns the demonstration of the 
programmable wireless data plane (section 1), we show how to interactively define and modify a 
MAC program to be injected in two competing nodes based on different hardware. The medium 
access behaviour of the two nodes is captured by the USRP nodes co-located in the remote testbed 
for debugging the MAC program directly over the air interface. For facilitating the definition of 
MAC protocols, we set-up a graphical programming tool in which the protocol state machine can be 
configured by using a classical drag and drop interface.  

As far as concerns the complete demonstration of a MAC cognitive cycle (section 2), we propose an 
interesting use-case in which two independent technologies, namely WiFi and ZigBee, coexist and 
interfere in the same environment. We implement a control logic able to detect the coexistence 
problems and the MAC adaptation strategy. Since a programmable MAC architecture is available 
also for ZigBee nodes (the SnapMAC architecture [1], developed by other CREW partners), our 
control program works on both the ZigBee and WiFi nodes. Coexistence problems are revealed by 
monitoring the throughput performance and the error rates of the WiFi nodes. When the interference 
problem is detected, the central controller enforces a novel MAC program on the WiFi nodes and 
ZigBee nodes, based on a time-division access between the two technologies (i.e. WiFi and ZigBee 
nodes are entitled to transmit in different channel slots).  

We conclude by remarking how the integration of programmable software platforms with the 
advanced sensing and controlling functionalities of the CREW testbed can significantly speed-up 
the prototyping of novel wireless protocol solutions.  
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1 Demonstrating	  MAC	  Programming	  and	  Portability	  
The goal of this demonstration is showing the effectiveness of the Wireless MAC Processor 
architecture [2] for implementing MAC protocols defined in terms of high-level programming 
languages. We integrated two different prototypes of the Wireless MAC Processor architecture on 
the CREW testbed [3]: the prototype working on commercial WiFi cards by Broadcom (already 
available before the starting of the project) called WMP-BROADCOM, and the prototype developed 
within CABIN-CREW project for the WARP software-defined-radio board called WMP-WARP.   

Figure 1 shows the architecture of the demonstration platform, which includes the network 
programmable nodes and the user interface available for interacting with the system.  

The network is composed by two programmable wireless nodes based on different hardware,  
namely WMP-BROACOM STA and WMP-WARP STA, attached to a WMP-BROADCOM AP.  

The user interface is given by an input and output GUI, for controlling the demonstration and 
visualizing the results. The control GUI provides a set of tools for designing a MAC program 
(called MAClet) in terms of state machines, and for compiling the program in a machine-code 
(called bytecode) readable by the WMP prototypes. The output GUI is given by a web-interface 
connected to a USRP node for sampling the channel idle/busy state and visualizing it in a temporal 
trace. Channel traces can be useful for giving an immediate evidence of MAC real-time operation 
and re-configuration, without relying on indirect performance figures. 

Figure 2 shows the layout of the control GUI organized into two main frames: the left frame, 
containing the global parameters of the state machine; the right frame where the graphical state 
machine is composed by linking logical states with specific transitions. Each state has a number of 
outgoing transitions triggered by the occurrence of events and enabled by the verification of an 
optional condition taken from a pre-defined list (i.e. from the WMP programming interface). Using 
conditional transitions allows to reduce the state space, since it decouples the actual state of the 
program into a logical protocol state (explicitly represented in the transition graph) and a 
configuration state (tracking the hardware state and the global program parameters). In our editor, we 
chose to implement Mealy state machines, in which the transition action is executed only if the 
transition is activated (i.e. upon the occurrence of the events and the verification of the condition).  

Figure 3 shows an example of output GUI, where the different RSSI samples captures by the USRP 
are organized into a temporal channel trace. Packet and ACK transmissions are identified by RSSI 
values much higher than the background noise (about -95dBm). The two different values (-70dBm 
and -62dBm) correspond to the different distances between the transmitters and the monitoring 
USRP. Moreover, the duration of the sample burst of similar values depends on the frame duration 
(thus resulting much longer for the data frames).    

For demonstrating the possibility to easily redefine different MAC schemes, we work on incremental 
modifications of a simple state machine implementing a traditional contention-based access protocol. 
Modifications can be decided run-time, but interesting examples can be: i) modifications of the 
contention parameters; ii) changing of random access to deterministic TDM access. The modified 
programs will be compiled and reloaded on the two heterogeneous hardware nodes during a run-time 
traffic session, while the channel analyser will be used for immediately visualize the channel access 
results.  
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Figure 1 – Demonstration platform for MAC programming: user interfaces and network nodes.  

 

 
Figure 2 – Control GUI: Layout of the MAC Program Editor 

 

 
Figure 3 – Output GUI: A channel trace in which it is possible recognize packet transmissions, ACK 

transmissions and idle channel intervals.  
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2 Demonstrating	  a	  MAC	  Cognitive	  Cycle	  
The goal of this demonstration is exploiting the CABIN-CREW extensions for showing the support 
of a whole MAC cognitive adaptation cycle in CREW. We implement a detection and reaction 
strategy devised to avoid interference between WiFi and ZigBee technologies on unlicensed ISM 
bands. The experiment scenario is configured at the w-iLab.t testbed, with one pair of WMP-
BROADCOM nodes and one pair of interfering ZigBee nodes, running TinyOS and the SnapMAC 
driver. For programming the network intelligence and enforcing the control commands, we use the 
cOntrol and Management Framework (OMF) and Measurement Library (OML). Although these 
frameworks have been designed for the configuration, execution and centralized control of 
experiments, they can be effectively used also for network control (as discussed in [4]).  

We consider a MAC cognitive cycle in which: i) the sensing phase is implemented by collecting 
throughput and error statistics by means of dedicated monitoring applications deployed on the nodes; 
ii) the analysis and reasoning phases are performed at the Experiment Controller (EC) by 
aggregating data and defining customized events to be fired when inter-technology coexistence 
problems arise, iii) the adaptation phase is finally achieved by loading and/or activating inter-
technology TDMA programs on the controlled nodes when needed. ZigBee and WiFi receivers 
report the achieved throughput to a central database using the OML framework. 

Figure 4 shows the architecture of the demonstration. The network is composed of two WiFi nodes 
and two ZigBee nodes; two UDP data sessions are configured on both the links. A wired control 
network is used from piloting the nodes: the measurements are sent to the OMF database, while the 
control logic is implemented into a OEDL program executed by the EC.  

The experiment control interface (web-based) is shown Figure 5. The interface allows to configure 
the ZigBee and WiFi traffic rate and to activate the two WiFi links. The same web interface is used 
for visualizing the experiment output by plotting the per-technology normalized throughput and the 
channel trace captured by the channel analyser.  

For demonstrating the MAC cognitive adaptation cycle, we dynamically activate two links (under 
different traffic rates) and observe the throughput and channel access variations due the actions 
enforced by the experiment controller (EC). Figure 5 shows an example of these adaptations by 
comparing two channel traces capture before and after the detection of inter-technology interference. 
In absence of coordination, both the technologies experience throughput degradation. One of the 
major reasons of this performance degradation is the different granularity at which Clear Channel 
Assessment (CCA) samples are collected. The phenomenon is depicted in the top diagram of the 
figure, where it is evident that ZigBee frames (identified by an RSSI value of about -88 dBm) last for 
about 4 ms and that WiFi and ZigBee transmissions can collide. When the EC detects the problem, it 
loads an inter-technology MAC scheme on all the nodes. According to this MAC program, ZigBee 
nodes can  transmit for a portion of the frame equal to 50 ms, while WiFi nodes can access the 
channel in the following 50 ms. The bottom diagram of the figure shows an example of coordinated 
channel access. The synchronization mechanism implemented in the program works as follows: 
ZigBee nodes autonomously switch between active and idle intervals, while being synchronized to 
the ZigBee coordinator. WiFi nodes switch to the activity interval after the detection of a burst of 
consecutive ZigBee packets and go to idle at the expiration of a timer.  

   

. 
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Figure 4 – Demonstration platform for MAC cognitive adaptations: user interfaces, control network and 

data network.  

 

 

 
Figure 5 – Web-based user interface.  

  

 

 
Figure 6 – Comparison of two channel traces before and after MAC adaptation.  
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3 Conclusion	  
The primary goal of our demonstration was the validation of the CABIN-CREW extensions for 
supporting MAC cognitive experiments. To this purpose, we developed and integrated several 
software tools on top of different hardware facilities already available in the testbed for: i) providing 
an high-level interface for defining hardware-agnostic MAC programs in terms of abstract state 
machines; ii) providing a OMF-compatible control interface for loading and activating MAC 
programs on the testbed programmable nodes.  

Our experiments are targeted to demonstrate both the contribution and to enlighten how the joint 
exploitation of programmable software platforms and advanced sensing and controlling 
functionalities can significantly speed-up the prototyping of novel wireless solutions. 
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