

IP CREW

Cognitive Radio Experimentation World

Usage of cognitive components in w-iLab.t

Wei Liu 15th Janurary 2014

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 258301 (CREW project).

Cognitive components in w-iLab.t

Deployment

Usage

- General guideline
- Customized sensing solution
 - USRP sensing engine
 - imec sensing engine
 - WARP sensing engine
- Thalis API

Hands on

USRP

- USRP N210 + XCVR 2450
- Xilinx[®] Spartan[®] 3A-DSP 3400 FPGA
- Gigabit Ethernet connection to host

WARP

- Wireless open-Access Research Platform
- Xilinx[®] Virtex [®] 4 FPGA
- Power PC processor
- Ethernet connection to host

imec sensing engine

- Dedicated sensing engine
- NOT a complete SDR solution
- Scaldio / WARP frontend
- Powered and configured via USB

Where are they installed ? M2 M1 1 M3 M4 M6 3 M7 M8 4 E1 M9 M10 M15 M16 M17 M18 M20 M12 8 M21 M22 6 10 B1 D1 F1 G1 H1 11 K1 13 D2 16 G2 11 14 17 18 20 B2 E2 F2 H2 12 K2 3 21 A3 24 D3 63 Dm 35 D4 25 E3 64 Em 36 E4 29 13 68 1m 40 22 B3 61 Bm 33 B4 31 K3 70 Km 42 K4 13 G3 66 Gm 38 G4 Hm 39 H4 46 E5 45 D5 48 G5 49 H5 50 15 52 K5 43 B5 47 F5 54 D6 55 F6 56 G6 60 K6 53 57 58 H6 16 USRP WARP imec sensing engine

- 6 USRP have different IP addresses 192.168.X0.2 (X=1,2,3,4,5,6)
 - location: 75, 62, 81, 65, 89, 69
- WARP's IP address depends on the bitstream
 - Location: 26, 27, 28
- Imec sensing engine
 - Location: 12, 19, 37, 44, 51

How are they connected

- USRP
 - Topology defined in Emulab experiment
 - Power control on the wilab2 status page

How are they connected

- WARP
 - Topology defined by Emulab experiment
 - Power cycle can be controlled on the status page

How are they connected

- imec sensing engine
 - Attached to dedicated Zotac nodes via USB
 - Include zotac nodes in the ".ns" emulab file
 - Powered and configured over USB

Cognitive components in w-iLab.tDeployment

Usage

- General guideline
- Customized sensing solution
 - USRP sensing engine
 - imec sensing engine
 - WARP sensing engine
- Thalis API

Hands on

- Create or use existing experiment on Emulab
- Get reservation
 - The experiment will be swapped in when your reservation starts
- Configure FPGA
 - Log on to Zotac node where the imec sensing engine or WARP is attached, and configure FPGA
 - Not needed for USRP, as it boots from the flash
- Configure network
 - For USRP and WARP, log on to the server and make sure the device is in the same subnet of the host interface.
 - Not needed for imec sensing engine, as it only uses USB port
- Reset the switch and the device
 - Reset USRP or the switch interface or both if you can not ping USRP, only needed for USRP

- Create or use existing experiment on Emulab
 - <u>http://wilab2.ilabt.iminds.be/</u>
 - Log in
 - User: crew
 - Password: training@wilab2
- Example ns script : 1 USRP and 1 SERVER 5P

```
# Generated by NetlabClient
set ns [new Simulator]
source tb_compat.tcl
##define serv1 and usrp1 and link0
set serv1 [$ns node]
$serv1 add-desire SERVER5P 1.0
tb-fix-node $serv1 server1
set u1 [$ns node]
tb-fix-node $u1 usrp1
$u1 add-desire USRP 1.0
set link1 [$ns duplex-link $serv1 $u1 1000000.0kb 0.0ms DropTail]
tb-set-ip-link $serv1 $link1 192.168.10.1
tb-set-ip-link $u1 $link1 192.168.10.2
tb-set-netmask $link1 "255.255.255.0"
```

Do not click on:

Experiment Options

View Activity Logfile

Swap Experiment In

Modify Settings Show History

Terminate Experiment Modify Experiment

Duplicate Experiment

Experiment (cogni

Device	Software Environment	Processing	Development
USRP N210	UHD (C++) GNU Radio, Iris, Thalis API, Labview, Simulink	Host computer	Host computer
WARP	Xilinx System Generator Matlab	FPGA on Board/Host computer	FPGA on Board/Host computer
imec sensing engine	imec sensing engine library (C)	Integrated Circuit (DIFFS)	Host computer

- Demo : using Gnuradio on w-iLab.t
- Transmit a signal with one USRP and detect the signal on another USRP.

- Log in to the USRPX server:
 - ssh -X crew@10.11.17.X
- Start GNURadio Companion:
 - gnuradio-companion
- Run the flow graph as if it is running on your own PC

- Where to find the documents
 - All documents are located on ops.wilab2.ilabt.iminds.be
 - /proj/cognitiveradio/sensing
 - 3 sub folders: imecse, usrpse, warpse
 - Starting point: README and manual in each folder
- On linux:
 - Open a file browser
 - Click on "File"
 - Select "Connect to Server"
 - Server:
 - ops.wilab2.ilabt.iminds.be
 - Folder
 - proj/cognitiveradio/sensing
 - User
 - □ crew
 - training@wilab2

Ŧ	Connect to Server ×		
Server Details			
<u>S</u> erver:	ps.wilab2.ilabt.iminds.be Port: 22		
Type:	SSH *		
Folder:	/proj/cognitiveradio/sensing		
User Details			
User Nam	ne:		
Password	:		
	Remember this password		
<u>H</u> elp	<u>Cancel</u> Connect		

Cognitive components in w-iLab.t

Deployment

Usage

- General guideline
- Customized sensing solution
 - USRP sensing engine
 - imec sensing engine
 - WARP sensing engine
- Thalis API

Hands on

Customized sensing solution

• USRP sensing engine

(b) The first level parallelism

(c) The second level parallelism and continuous spectrum sensing

Customized sensing solution

- USRP sensing engine
 - Written in C++ (above UHD driver)
 - Maximum real span 25 MHz
 - Sweeping and none sweeping modes (seamless capturing)
 - Use multi-threading to increase processing speed
 - Different detection mode: maxhold, averaging
 - User interface binary with options

Customized sensing solution

- imec sensing engine (training day)
 - Writen in C, using imec sensing library
 - Very fast sweeping
 - Various detection mode: WLAN_G, ZIGBEE, BLUETOOTH...
 - User interface: binary with options
- WARP sensing engine
 - Custom-designed FPGA bit stream
 - 40 MHz instantaneous frequency span
 - Up to 20 channels estimated in parallel
 - User interface: Matlab

Thalis API

- Located on the ops.wilab2.ilabt.iminds.be, /proj/cognitiveradio/data/ThalisAPI
- Structure

- More information refers to the presentation:
 - XCVRonUSRP2_Highlights CREW Training Days 190213 TCS presentation 1_2_v1.1.pdf

Cognitive components in w-iLab.t

Deployment

Usage

- General guideline
- Customized sensing solution
 - USRP sensing engine
 - imec sensing engine
 - WARP sensing engine
- Thalis API

Hands on

3 Types of lab instructions

- USRP N210: Thalis API + USRP sensing engine
- imec sensing engine
- WARP sensing engine

2 threads

Hands on

USRP and imec sensing engine

- Local GUI application
- Remote sensing engine application

- To kill the apps:
 - First kill the sensing engine
 - Then kill the GUI
- Play with different options
- Take a look at the README
- imec sensing engine:
 - Compile your own application

WARP sensing engine

- First configure the FPGA on the Zotac node
- Then run the specified matlab script from the Server

WARP sensing engine

- First configure the FPGA on the Zotac node
- Then run the specified matlab script from the Server

WARP sensing engine

- First configure the FPGA on the Zotac node
- Then run the specified matlab script from the Server
- Take a look at the Matlab script
 - Configure the RF frequency in initWARPSE_visualization.m

- Run the sensing engine again

Thalis API

- You will compile an application with Thalis API and transmit a signal
- Observe this signal on your neighbor's sensing engine
- Configure parameters and recompile

Fast-prototyping Transceiver Subsystem

Hands on

what am I transmitting ? Eg: Where is the transmitter? What is the frequency ?

