
ProtoStack – a tool for remote
experimentation with

composable stacks
Carolina Fortuna

Jozef Stefan Institute,

Ljubljana, Slovenia

CREW training days,

Brussels, Feb 19-20 2013

Outline

• Motivation
• Why is the composition of communication services relevant?
• Why is experimenting in realistic environments difficult?
• What kind of research can the composition of communication services

support?

• The ProtoStack tool and its components

• The CRime module library

• The declarative language and the workbench

• Service oriented networks with ProtoStack

• Cognitive networks with ProtoStack

2/20/2013 2

Motivation

2/20/2013 3

Why is the composition of communication
services relevant? (1/3)
• Speeds up the development cycle for communication technology

Design Simulate Emulate Test Deploy

2/20/2013 4

Why is the composition of communication
services relevant? (1/3)
• Speeds up the development cycle for communication technology

Design Simulate Emulate Test Deploy

5

• How come?

2/20/2013

Why is the composition of communication
services relevant? (1/3)
• Speeds up the development cycle for communication technology

Design Simulate Emulate Test Deploy

2/20/2013 6

• How come? Let’s see how communication networks function…

(N) Instance (N) Instance (N) Protocol

(N-1) Instance (N-1) Instance (N-1) Protocol

(N+1)
Instance

(N+1)
Instance

(N+1) Protocol
Layer N+1

Layer N

Layer N-1

Host A Host B

Hosts implement communication
functionality across several layers of

abstraction: link layer (physical connection
between machines), network layer (logical
connection between machines), transport

layer (logical connection between
processes)

Why is the composition of communication
services relevant? (1/3)
• Speeds up the development cycle for communication technology

Design Simulate Emulate Test Deploy

2/20/2013 7

• How come? Let’s see how communication networks function…

(N) Instance (N) Instance (N) Protocol

(N-1) Instance (N-1) Instance (N-1) Protocol

(N+1)
Instance

(N+1)
Instance

(N+1) Protocol
Layer N+1

Layer N

Layer N-1

Host A Host B

Data

Data

Data

Data

N+1 Hdr

N+1 Hdr N Hdr

N+1 Hdr N Hdr N-1 Hdr

Data are processed
across several layers
of abstraction, each

adding a header.

Sometimes the same
operation repeats
across layers: link
layer and network
layer broadcast.

Why is the composition of communication
services relevant? (1/3)
• Speeds up the development cycle for communication technology

Design Simulate Emulate Test Deploy

2/20/2013 8

• How come? Let’s see how communication networks function…

(N) Instance (N) Instance (N) Protocol

(N-1) Instance (N-1) Instance (N-1) Protocol

(N+1)
Instance

(N+1)
Instance

(N+1) Protocol
Layer N+1

Layer N

Layer N-1

Host A Host B

Sometimes the same
operation repeats
across layers: link
layer and network
layer broadcast.

What if we found an abstraction that:
- looks at operations as services

- allows composition of these services
- facilitates it in a dynamic way

With such abstraction, operations can be:
- implemented once and used many times

- can be layered in different ways
- the layering is semi-automatic

Why is the composition of communication
services relevant? (2/3)
• Speeds up the development cycle for communication technology

Design Simulate Emulate Test Deploy

2/20/2013 9

• How come? Let’s see how communication networks function…

• So, why hasn’t this been done before?
• because part of the communication network processing has been

implemented in hardware

• because communication network design precedes significant breakthroughs
in software engineering

Why is the composition of communication
services relevant? (3/3)
• Speeds up the development cycle for communication technology

Design Simulate Emulate Test Deploy

2/20/2013 10

• How come? Let’s see how communication networks function…

• So, why hasn’t this been done before?

• And why can it be done now?
• because software configurable networks and software defined networks allow it
• because service oriented design has been proposed

Why is experimenting in realistic
environments difficult?

2/20/2013 11

- What simulator to use?
- Is there a model I can adapt?

- What are the scenarios to investigate?
- What are the parameters and variables?

Test
environment

- What test environment to use?
- How can I access the environment?

- How can I configure the environment?
- Is there any code I can adapt?

- What are the scenarios to investigate?
- What are the parameters and variables?
- Is there anything wrong with my model?

- Is the environment malfunctioning?

Why is experimenting in realistic
environments difficult?

2/20/2013 12

- What simulator to use?
- Is there a model I can adapt?

- What are the scenarios to investigate?
- What are the parameters and variables?

Test
environment

- What test environment to use?
- How can I access the environment?

- How can I configure the environment?
- Is there any code I can adapt?

- What are the scenarios to investigate?
- What are the parameters and variables?
- Is there anything wrong with my model?

- Is the environment malfunctioning?

More distractions, more worries,
more questions to answer.

What kind of research can the composition of
communication services support?
• The research that monolithic approaches supported thus far …

 +

• creation of new protocols by violating the layered architecture – also
referred to as cross-layer design

• creation of new protocols and algorithms augmented by techniques
from the artificial intelligence domain – also referred to as cognitive
networks

• investigating fundamental architectural changes by creating new
abstractions – also referred to as clean slate design

2/20/2013 13

The ProtoStack tool and its
components

2/20/2013 14

The components of the ProtoStack

2/20/2013 15

is a set of machines
on which the stack

built by the
composition of

services is deployed
and tested

the source code of
the modules used for

composing
communication

services. Besides the
code for the modules

it also contains
additional code
necessary for

compiling and linking
the binary image

is an intermediate
level of abstraction

between a user
interface such as the
workbench and the
program code. It is
used to instantiate

and configure
modules from the

module library. Can
accommodate

validity checking,
error detection, etc.

is thought of as a
control panel which

allows the
experimenter to

configure, start, run,
retrieve and visualize

the results of an
experiment.

On how ProtoStack operates

16 2/20/2013

The server parses the Turtle
descriptions of the modules from the .c

source files The server
orchestrates
ProtoStack.

On user request, the server
interrogates the knowledge base and
automatically renders the workbench.

The server checks with the knowledge
base if the stack composed by the user

is valid.

For valid stacks, the server
auto-generates initialization

code.

The server invokes the tools for
generating the image and programming

the VESNA.

Example of operational set-up

2/20/2013 17

Broadcast
demo

ProtoStack’s features

• Modularity
• the communication services have to have a modular design and implementation to allow

composability of more complex services which can then achieve end to end communication.

• Flexibility
• the components of the workbench should be designed and implemented in a way that allows

interacting with the resulting tool at different levels of abstractions (e.g. at the module library
level, at the workbench level). The components should also be easy to extend and upgrade.

• Easy programming
• users with various levels of programming skills should find it easy to use the tools appropriate to

their level of experience resulting from the implementation of the framework.

• Reproducibility of experiments
• the framework should support re-running and reproducing experiments in an easy way for

instance by saving and reloading an experiment description.

• Remote experimentation
• remote users should be able to define and perform experiments and download the result. This can

be most easily achieved through a web portal.

2/20/2013 18

Comparison of ProtoStack with other tools

• The four component approach is
generic enough and well suited
for design and experimentation
with dynamic composition of
communication services.

Name Workbench Declarative language Module library Physical testbed

x-Kernel

Click

SNA

ProtoStack

Name Modularity Flexibility Easy

programming

Reproducibility

of experiments

Remote

experimentation

x-

Kernel

Click

SNA

Proto

Stack

 2/20/2013 19

• All tools address most of the
requirements

• Only ProtoStack explicitly
addresses the requirement related
to remote experimentation

The Composeable Rime module
library

2/20/2013 20

Composeable Rime (CRime)

• Is a module library
• Written in C

• Inspired by and based on Contiki’s Rime stack

• Works on any platform that can run Contiki OS

• Each module implements a communication service (communication
functionality)

• Modules can be composed to offer complex communication services

2/20/2013 21

CRime abstractions

2/20/2013 22

The abstract module is a
generic building block of the

CRime stack. Behind each
instance of an amodule hides

a communication service

The pipe is a vertical structure which can
be accessed by any of the modules in a
composed stack. The pipe contains only

data structures corresponding to
parameters that are used by the stack.

The stack is a structure which contains a
meaningful sequence of amodules and a pipe. It
behaves as a container for these elements and

enables the composition of more complex
communication services which use more than a

single channel at a time.

CRime abstractions

2/20/2013 23

The abstract module is a
generic building block of the

CRime stack. Behind each
instance of an amodule hides

a communication service

The pipe is a vertical structure which can
be accessed by any of the modules in a
composed stack. The pipe contains only

data structures corresponding to
parameters that are used by the stack.

The stack is a structure which contains a
meaningful sequence of amodules and a pipe. It
behaves as a container for these elements and

enables the composition of more complex
communication services which use more than a

single channel at a time.

These abstractions are
introduced by CRime
and they cannot be

found in Rime.

The abstract module (amodule)

• The interface of the abstract module.

void (* c_open)(struct pipe *p, struct stackmodule_i *module);
void (* c_close)(struct pipe *p, struct stackmodule_i *module);
int (* c_send)(struct pipe *p, struct stackmodule_i *module);
void (* c_recv)(struct pipe *p, struct stackmodule_i *module);
void (* c_sent)(struct pipe *p, struct stackmodule_i *module);
void (* c_dropped)(struct pipe *p, struct stackmodule_i *module);
void (* c_timed_out)(struct pipe *p, struct stackmodule_i *module);
int (* c_discover)(struct pipe *p, struct stackmodule_i *module);
void (* c_read_chunk)(struct pipe *p, struct stackmodule_i *module);
void (* c_write_chunk)(struct pipe *p, struct stackmodule_i *module);
void (* c_new_route)(struct pipe *p, struct stackmodule_i *module);

2/20/2013 24

• The amodule is an abstraction
of communication modules and
behaves as a wrapper around
those modules (red box)

• It defines a set of generic
functions (the interface)

The pipe

The pipe data structure.

struct pipe {
 struct channel *channel;
 uint16_t channelno;
 struct queuebuf *buf;
 struct packetbuf_attrlist *attrlist;
 rimeaddr_t in_sender, out_sender;
 rimeaddr_t in_receiver, out_receiver;
 rimeaddr_t in_esender, out_esender;
 rimeaddr_t in_ereceiver, out_ereceiver;

 int status;
 int num_tx;
 uint8_t seq_no;
 uint8_t hop_no;

 //stack specific data structure
….
};

2/20/2013 25

• The pipe is a data structure
corresponding to the concept of
vertical layer from cross-layer
design terminology.

• It stores cross layer information
that is beyond the scope of
chameleon’s data structures.

• Facilitates modular protocol
stack and cognitive networking
experimentation.

The stack

The stack_open function.

void stack_open(struct stack_i *stack){

 int p;

 for (p = 0; p < STACKNO; p++) {

 int modno = 0;

 if (stack[p].amodule[modno].c_open != NULL) {

 c_open(stack[p].pip,

 stack[p].amodule,

 modno);

 }

 }

};

2/20/2013 26

• Is an abstraction that refers to a
complex communication service.

• It consists of a set of amodules
and one or more pipes.

Theoretical modeling of the CRime
communication stack
• The theoretical model behind the CRime

communication stack is a tree

• Each node of the tree includes one or more
abstract modules which are connected and
communicate in a horizontal manner.

• Each leaf of the tree corresponds to a channel
and the corresponding branch forms a stack
and has a pipe attached.

• Recursion is used to walk through the tree.

2/20/2013 27

Architectural comparison with Rime

• The Rime dependency graph is
hard coded

• Any path through the Rime
dependency graph forms a valid
stack
• because of this, functionality can

repeat across modules

• The CRime dependency graph is
composed by the user un a
dynamic way

• Some paths through the CRime
dependency graph may not form a
valid stack
• functionality across modules needn’t

repeat

 2/20/2013 28

Triggered
broadcast

demo

Architectural comparison with Rime

2/20/2013 29

Hard coded tree
implementation
example in Rime

Flexible tree
implementation
example using

CRime’s amodule
abstraction

The cost of composeability

• Composeability introduces additional overhead (the implementation of the
abstractions)

• the Rime and CRime components differ just in the size of the code with no
clear advantage on one or the other side
• the cost of the abstraction does not appear at this level yet

• the size of the code of the applications which use CRime stacks is about
16% larger (~13.000 bytes)

• execution time for the sequence of operations open→send→recv→close is
~256 ms in Rime and 622 ms in CRime (a factor of ~2.4 higher)

• CRime consumes 1.6 % more energy than Rime

2/20/2013 30

The ProtoStack declarative
language and the Workbench

2/20/2013 31

The ProtoStack declarative language -
requirements
• Simplicity

• as friendly as possible to the target user group

• Machine readable
• to facilitate easy manipulation by machines

• Standardized
• a relatively widely adopted, open and stable standardized approach is preferred to a less

stable and potentially proprietary approach

• Interoperability
• to facilitate the interoperability of systems so that potential reference implementations of

the framework can be easily connected at this level of abstraction

• Support for knowledge representation and logic reasoning
• should also support emerging logical reasoning for self-configuration of communication

networks

2/20/2013 32

The ProtoStack declarative language

• uses the RDF data model

• the custom vocabulary built by

creating the CRime ontology

• the Turtle syntax which is human readable and can easily be
transformed in XML if needed.

2/20/2013 33

Subject (Resource) Predicate (Property) Object (Statement)

crime:c_abc rdf:type cpan:Module

crime:c_open rdfs:subClassOf crime:Function

//turtle crime:c_abc rdf:type cpan:Module .

ProtoStack
configuration steps

• fact specification, translation
and storage

• workbench rendering

• manual stack composition

• validity checking and code
generation

2/20/2013 34

Fact specification, translation and storage

2/20/2013 35

1

c_app KB

http://localhost:8081/workbench/repositories/crime/explore?resource=crime:c_app
http://localhost:8081/workbench/repositories/crime/explore?resource=crime:c_app
http://localhost:8081/workbench/repositories/crime/explore?resource=crime:c_app

Workbench rendering

2/20/2013 36

2

Manual stack composition

2/20/2013 37

Validity checking

2/20/2013 38

3

Rules for validity checking

• Rules are currently hard
coded in the server

• For experimentation
using Service Oriented
Networks, a reasoner
supporting rules has to
be integrated in the
system

2/20/2013 39

(#$implies
 (#$and
 (#$isa ?X #$ComputerProgramModule-CW)
 (#$isa ?Y #$ComputerProgramModule-CW)
 (#$hasScope ?Y #$multihop)
 (#$hasScope ?x #$multihop)
)
 (#$on-Abstract ?X ?Y)
)

(#$implies
 (#$and
 (#$isa ?X #$ComputerProgramModule-CW)
 (#$isa ?Y #$ComputerProgramModule-CW)
 (#$hasScope ?Y #$singlehop)
 (#$hasScope ?x #$multihop)
)
 (#$on-Abstract ?X ?Y)
)

(#$implies
 (#$and
 (#$isa ?X #$ComputerProgramModule-CW)
 (#$isa ?Y #$ComputerProgramModule-CW)
 (#$hasScope ?Y #$singlehop)
 (#$hasScope ?x #$singlehop)
)
 (#$on-Abstract ?X ?Y)

)

Code generation

2/20/2013 40

4

Reprogram the testbed

2/20/2013 41

5

Unicast demo

Service Oriented Networks with
ProtoStack

2/20/2013 42

Service Oriented Networks

• a network which makes use of Service Oriented Architecture
principles to provide end-to-end transport services
• Services are described, published and can be discovered

• Queried related to aspects of services are supported

• Services can be composed

2/20/2013 43

Describing and publishing services with
ProtoStack
• Description is done in the .h files using RDF language, the CRime

ontology and other relevant vocabularies

• Publishing is done using the Sesame tool (triple store + web server)

2/20/2013 44

Querying for published ProtoStack service

• Can be manually done through the knowledge base’s workbench

• Can be done by using SPARQL tools.

• Can be automatic between ProtoStack instances, typically used for
synchronization

2/20/2013 45

1. PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2. PREFIX cpan: <http://downlode.org/rdf/cpan/0.1/cpan.rdf#>
3. PREFIX crime: <http://sensors.ijs.si/crime#>
4. PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
5. SELECT ?name ?category ?description
6. WHERE {
7. ?name rdf:type crime:Function .
10. }

Composition of services using ProtoStack

• Composition of services for information transport using ProtoStack
• Manual composition of services

• where all the necessary reasoning is performed by the human.

• Semi-automatic composition of services
• where the human is guided in the decision making process by machine reasoning.

• Automatic composition of services
• where all the reasoning is performed by machines.

2/20/2013 46

Cognitive networks with
ProtoStack

2/20/2013 47

Cognitive Networks

• Networks augmented by a knowledge plane that
contains two key elements
• A representation of relevant knowledge about the scope

(device, homogenous network, heterogeneous network,
etc.)

• A cognition loop which uses AI techniques inside its states
(machine learning techniques, decision making techniques,
etc.)

2/20/2013 48

Knowledge representation in ProtoStack

2/20/2013 49

1. PREFIX :<http://sensorlab.ijs.si/2012/v0/crime.owl#>
2. PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
3. PREFIX Process:<http://www.daml.org/services/owl-s/1.1B/Process.owl#>
4. PREFIX owl:<http://www.w3.org/2002/07/owl#>
5. PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>
6. PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
7. PREFIX cpan:<http://downlode.org/rdf/cpan/0.1/cpan.rdf#>
8.
9. SELECT ?stack WHERE {
10. ?stack rdf:type :Stack .
11. ?stack :formedOf :c_reliable .
12. ?stack :consumesPower ?power .
13. }
14. ORDER BY ?power
15. LIMIT 1

Network layer cognitive loop with cross-layer
information

2/20/2013 50

• Path cost in terms of hop no – could be too simplistic at times

• Additional parameter to be considered is RSSI

2/20/2013 51

Mesh stack with CRime

• Communication service

• Management service

Route discovery

Multihop routing

Network layer cognitive loop with cross-layer
information using ProtoStack

2/20/2013 52

• CRime extended with c_model source files where
all the model specific logic is stored
• The model creation and update functions are called

from the c_route_discovery module.

• This model is used to update the route costs in the
routing table

• c_multihop module then uses the resulting routing
table when sending packets

• RSSI is straightforward using the Rime packet
attributes which are visible to all the modules of
the stack

Network layer cognitive loop with cognitive
radio

2/20/2013 53

• Assuming a cognitive radio device able to sense the
spectrum and dynamically select available channels,
the simple routing problem becomes more complex
• the routing table has to contain entries for each

potentially available channel

• have a model for channel availability (e.g. based on energy
detection)

• At packet transmission time, the routing module needs to
consult the channel availability and decide

 which channel is suitable for transmission.

Network layer cognitive loop with cognitive
radio using ProtoStack
• that the CR loop is implemented

independently of Crime

• the CR loop periodically
updating the communication
service’s pipe structure

• c_model module may need to be
generalized
• if the radio module can also switch

between channels, then this has
to be reflected in the network
model and routing table

• CR loop is implemented using
CRime modules

• c_channel_scan and
c_channel_availability_model
modules may need to be
inserted between the
c_broadcast and c_channel
modules of the communication
service

2/20/2013 54

Soon on LOG-
a-TEC

Network layer cognitive loop with radio
environment maps

2/20/2013 55

• Information related to the occupancy of the channels
is most easily acquired from radio environment map
services through a control channel
• nodes can request information from the remote database,

• such information is periodically broadcast.

• The network level cognitive loop needs to take into
account spectrum occupancy information at the time
of making a decision

Network layer cognitive loop with radio
environment maps using ProtoStack

2/20/2013 56

• dedicated management service communicating with
the REM has to be implemented.
• Can be done using existing CRime modules or developing

additional modules that are necessary

Network layer cognitive loop with
connectivity broker

2/20/2013 57

• The connectivity broker
• is a concept that provides abstractions necessary for

developing large scale cognitive wireless network
environments by enabling joint optimization of spectrum
resources

• operates in the control and management planes of the
networks

• the core concept behind it is the connectivity agent.

• ProtoStack tool can be used to implement node-level
functionality corresponding to the connectivity agent

Conclusions

• Presented the ProtoStack tool and how it can be used in several
experimentation scenarios

• The software will be soon available for download on GitHub

• The corresponding testbed will be available as soon as LOG-a-TEC
port of Contiki is fully completed

2/20/2013 58

Questions?

2/20/2013 59

