ProtoStack — a tool for remote
experimentation with
composable stacks

Carolina Fortuna

Jozef Stefan Institute,

Ljubljana, Slovenia

CREW training days,
Brussels, Feb 19-20 2013

Outline

* Motivation
 Why is the composition of communication services relevant?
* Why is experimenting in realistic environments difficult?

* What kind of research can the composition of communication services
support?

* The ProtoStack tool and its components

* The CRime module library

* The declarative language and the workbench
* Service oriented networks with ProtoStack

* Cognitive networks with ProtoStack

Motivation

Why is the composition of communication
services relevant? (1/3)

* Speeds up the development cycle for communication technology

_ Design \Simulate _Emulate N Test \ Deploy

Why is the composition of communication
services relevant? (1/3)

* Speeds up the development cycle for communication technology

_ Design \Simulate _Emulate N Test \ Deploy

 How come?

Why is the composition of communication
services relevant? (1/3)

* Speeds up the development cycle for communication technology

> Design >Simulate >Emu|ate > Test > Deploy

e How come? Let’s see how communication networks function...

Hosts implement communication
functionality across several layers of
abstraction: link layer (physical connection

between machines), network layer (logical
connection between machines), transport
layer (logical connection between
processes)

2/20/2013

Layer N+1

Layer N

Layer N-1

(N-:I-l)

(N+1) Protocol

Instance

N

N
e

(N-I:-l)

Instalnce

(N) Instance

(N) Protocol

N

Vv

(N) Instance

(N-1) Instance

N

(N-1) Protocol

N

N\

(N-1) Instance

Host A

Host B

Why is the composition of communication

services relevant? (1/3)

* Speeds up the development cycle for communication technology

N Design \Simulate \Emulate N Test

N Deploy

Let’s see how communication networks function...

(N-:l-l)

(N+1) Protocol

Instance

(N+1)
Instalnce

(N) Instance |<

|

|

; Layer N+1

[N+1 Hdr [Data |

|

|

i Layer N
[N Hdr [N+1 Hdr [Data |

1

|

; Layer N-1

[[N-1 Hdr | N Hdr | N+1 Hdr | Data |
|

(N-1) Instance <

v

Host A

(N) Instance

*| (N-1) Instance

Host B

Why is the composition of communication
services relevant? (1/3)

* Speeds up the development cycle for communication technology

> Design >Simulate >Emu|ate > Test > Deploy

e How come? Let’s see how communication networks function...

What if we found an abstraction that:

- looks at operations as services (N+1) (N+1) Protocol (N+1)

N

- allows composition of these services Layer N+1 Instance ~ Instance

- facilitates it in a dynamic way

With such abstraction, operations can be:

- implemented once and used many times EEEWEN (N) Instance (N) Instance

Sometimes the same
operation repeats

- can be layered in different ways

- the layering is semi-automatic

Layer N-1 (N-1) Instance across layers: link & (N-1) Instance

layer and network

layer broadcast.

2/20/2013 Host A Host B’

Why is the composition of communication
services relevant? (2/3)

* Speeds up the development cycle for communication technology

_ Design \Simulate _Emulate N Test \ Deploy

e How come? Let’s see how communication networks function...

* So, why hasn’t this been done before?

e because part of the communication network processing has been
implemented in hardware

* because communication network design precedes significant breakthroughs
in software engineering

Why is the composition of communication
services relevant? (3/3)

* Speeds up the development cycle for communication technology

_ Design \Simulate _Emulate N Test \ Deploy

e How come? Let’s see how communication networks function...

* So, why hasn’t this been done before?

* And why can it be done now?

* because software configurable networks and software defined networks allow it
* because service oriented design has been proposed

Test

Why is experimenting in realistic environment o
environments difficult?

- What test environment to use?
- How can | access the environment?
- How can | configure the environment?
- Is there any code | can adapt?

- What are the scenarios to investigate?
- What are the parameters and variables?
- Is there anything wrong with my model?
2/20/2013 - Is the environment malfunctioning?

- What simulator to use?
- Is there a model | can adapt?
- What are the scenarios to investigate?
- What are the parameters and variables?

Test

Why is experimenting in realistic environment o
environments difficult?

More distractions, more worries,
more questions to answer.

- What test environment to use?
- How can | access the environment?
- How can | configure the environment?
- Is there any code | can adapt?

- What are the scenarios to investigate?
- What are the parameters and variables?
- Is there anything wrong with my model?
2/20/2013 - Is the environment malfunctioning?

- What simulator to use?
- Is there a model | can adapt?
- What are the scenarios to investigate?
- What are the parameters and variables?

What kind of research can the composition of
communication services support?

* The research that monolithic approaches supported thus far ...
+

* creation of new protocols by violating the layered architecture — also
referred to as cross-layer design

* creation of new protocols and algorithms augmented by techniques
from the artificial intelligence domain — also referred to as cognitive
networks

* investigating fundamental architectural changes by creating new
abstractions — also referred to as clean slate design

The ProtoStack tool and its
components

The components of the ProtoStack

Physical

testbed

is a set of machines
on which the stack
built by the
composition of
services is deployed
and tested

Module
library

Declarative
language

the source code of
the modules used for
composing
communication
services. Besides the
code for the modules
it also contains
additional code
necessary for
compiling and linking
the binary image

is an intermediate
level of abstraction
between a user
interface such as the
workbench and the
program code. It is
used to instantiate
and configure
modules from the
module library. Can
accommodate
validity checking,
error detection, etc.

The

workbench

is thought of as a
control panel which
allows the
experimenter to
configure, start, run,
retrieve and visualize
the results of an
experiment.

On how ProtoStack operates

The server parses the Turtle On user request, the server

descriptions of the modules from the .c interrogates the knowledge base and
source files automatically renders the workbench.

The server
orchestrates

1 2
ProtoStack. m /’\

Physical Module Declarative The
testbed library language workbench

ontology :

openill.org Turtle
il 3

For valid stacks, the server

F L4

The server checks with the knowledge

The server invokes the tools for
generating the image and programming
the VESNA.

auto-generates initialization
code.

base if the stack composed by the user
is valid.

Example of operational set-up

Module Declarative
library language
C-RIME

ontology
.h .c H 4
openiill .org

Turtle

2/20/2013

VESNA

Physical
testbed

Broadcast
demo

The
workbench

S

Wirelt

17

ProtoStack’s features

Modularity
* the communication services have to have a modular design and implementation to allow
composability of more complex services which can then achieve end to end communication.
Flexibility
* the components of the workbench should be designed and implemented in a way that allows
interacting with the resultln% tool at different levels of abstractions (e.g. at the module library
level, at the workbench level). The components should also be easy to extend and upgrade.
Easy programming
* users with various levels of programming skills should find it easy to use the tools appropriate to
their level of experience resulting from the implementation of the framework.
Reproducibility of experiments
* the framework should su‘opor.t re-running and redprodgci_ng experiments in an easy way for
instance by saving and reloading an experiment description.
Remote experimentation

* remote users should be able to define and perform experiments and download the result. This can
be most easily achieved through a web portal.

Comparison of ProtoStack with other tools

* The four component approach is
generic enough and well suited
for design and experimentation
with dynamic composition of
communication services.

e All tools address most of the
requirements

* Only ProtoStack explicitly

addresses the requirement related
to remote experimentation

Name Workbench Declarative language Module library Physical testbed
x-Kernel v v v v
Click v v v v
SNA . v v v
ProtoStack v v v v

Name Modularity Flexibility Easy

Reproducibility Remote
programming of experiments experimentation

X_
Kernel
Click

SNA

Proto
Stack

v

v

v
v

v

v v °
v ° °
v v v

The Composeable Rime module
library

Composeable Rime (CRime)

* Is a module library

* Writtenin C
* Inspired by and based on Contiki’s Rime stack
* Works on any platform that can run Contiki OS

* Each module implements a communication service (communication
functionality)

* Modules can be composed to offer complex communication services

CRime abstractions

The abstract module is a
generic building block of the
CRime stack. Behind each
instance of an amodule hides
a communication service

The pipe is a vertical structure which can
be accessed by any of the modules in a
composed stack. The pipe contains only

data structures corresponding to
parameters that are used by the stack.

/

The stack is a structure which contains a
meaningful sequence of amodules and a pipe. It
behaves as a container for these elements and
enables the composition of more complex
communication services which use more than a
single channel at a time.

2/20/2013

amodule Im

amodule 12

amodule 11

Jatme

\ A

amodule 2n

amodule 21

stackl stack2

amodule 3p

amodule 32

amodule 31

stack3 =

CRime abstractions

The abstract module is a
generic building block of the
CRime stack. Behind each
instance of an amodule hides
a communication service

The pipe is a vertical structure which
be accessed by any of the module
composed stack. The pipe contains only

data structures corresponding to
parameters that are used by the stack.

/

These abstractions are
introduced by CRime
and they cannot be

found in Rime.

aiNs a

avesws a container for these elements and

single channel at a time.

amodule Im

\ A

amodule 2n

2/20/2013

amodule 12

amodule 11

stackl

amodule 21

stack2

amodule 3p

amodule 32

amodule 31

stack3

enables the composition of more complex
communication services which use more than a

Jatme

23

The abstract module (amodule)

* The amodule is an abstraction
of communication modules and
behaves as a wrapper around

those modu

es (red box)

broadcast sent
broadcast recv

broadcast open
broadcast close
broadcast send

c_broadcast

¢ unicast sent
C_unicast recv

C_unicast open
¢ _unicast close
¢ _unicast send

C_unicast

* |t defines a set of generic
functions (the interface)

2/20/2013

* The interface of the abstract module.

void (* c_open)(struct pipe *p, struct stackmodule_i *module);

void (* c_close)(struct pipe *p, struct stackmodule_i *module);

int (* c_send)(struct pipe *p, struct stackmodule_i *module);

void (* c_recv)(struct pipe *p, struct stackmodule_i *module);

void (* c_sent)(struct pipe *p, struct stackmodule_i *module);

void (* c_dropped)(struct pipe *p, struct stackmodule_i *module);
void (* c_timed_out)(struct pipe *p, struct stackmodule_i *module);
int (* c_discover)(struct pipe *p, struct stackmodule_i *module);

void (* c_read_chunk)(struct pipe *p, struct stackmodule_i *module);
void (* c_write_chunk)(struct pipe *p, struct stackmodule_i *module);
void (* c_new_route)(struct pipe *p, struct stackmodule_i *module);

24

The pipe

* The pipe is a data structure
corresponding to the concept of structrieed
vertical layer from cross-layer
design terminology.

* |t stores cross layer information
that is beyond the scope of
chameleon’s data structures.

* Facilitates modular protocol
stack and cognitive networking
experimentation.

The pipe data structure.

struct channel *channel;

uint16_t channelno;

struct queuebuf *buf;

struct packetbuf_attrlist *attrlist;
rimeaddr_t in_sender, out_sender;
rimeaddr_t in_receiver, out_receiver;
rimeaddr_tin_esender, out_esender;

rimeaddr_tin_ereceiver, out_ereceiver;

int status;

int num_tx;
uint8 t seq_no;
uint8_t hop_no;

//stack specific data structure

e e —

— -

The stack

* Is an abstraction that refers to a
complex communication service.

* |t consists of a set of amodules
and one or more pipes.

amodule 1m amodule 2n

amodule 3p

amodule n

amodule 32

-
amodule 31

stackl stack2 stack3

amodule 12 amodule 22

_ _
amodule 11 amodule 21

amodule 2

1
amodule 1

2/20/2013

The stack_open function.

void stack_open(struct stack_i *stack){

int p;
for (p = 0; p < STACKNO; p++) {
int modno = 0;
if (stack[p].amodule[modno].c_open != NULL) {
c_open(stack[p].pip,
stack[p].amodule,
modno);

26

Theoretical modeling of the CRime
communication stack

e The theoretical model behind the CRime
communication stack is a tree

* Fach node of the tree includes one or more
abstract modules which are connected and
communicate in a horizontal manner.

* Each leaf of the tree corresponds to a channel
and the corresponding branch forms a stack
and has a pipe attached.

* Recursion is used to walk through the tree.

riggered

Architectural comparison with Rime s
[c_unicast_| [unicast |

| c_polite [polite | ipolite
c_broadcast | broadcast stbroadcast

| c_a'bc | at;c

| Chameleon | T ——
 The CRime dependency graph is The Rime dependency graph is
composed by the user un a hard coded

dynamic way * Any path through the Rime

* Some paths through the CRime dependency graph forms a valid
delpgnderllcy graph may not form a stack
valid stac

* because of this, functionality can
* functionality across modules needn’t repeat across modules
repeat

2/20/2013 28

Architectural co

C unicast sent <«

broadcast sent <

mparison with Rime

abc sent

C_unicast recv <

broadcast recv <

c_unicast open

> broadcast open

abc_open

¢ unicast close

> broadcast close

abc close

c unicast send

¢ unicast

amodule[2]

> broadcast send

¢ broadcast

amodule[1]

YVY

abc send

c_abc

amodule[0]

abc input Z

Flexible tree
implementation
example using
CRime’s amodule
abstraction

struct unicast_conn {
struct broadcast_conn c;
const struct unicast_callbacks *u;

|

unicast sent € = ——

unicast 1eCV g m o

| PR —

unicast open

>

g;g'@/a@@lglose

>

unicast send

>

struct broadcast_conn {
struct abc_conn c;
_const struct broadcast_callbacks *u;r
I |
|

broadcast sent < — =——=- -

broadcast 1ecV gm = 4

struct abc _conn {
struct channel channel;
— const struct abc callbacks *u;

55

abc_sent
abc input

broadcast open

broadcast close

broadcast send

abc open
abc_close

abc send

Z Hard coded tree
implementation
example in Rime

pAS)

The cost of composeability

 Composeability introduces additional overhead (the implementation of the
abstractions)

* the Rime and CRime components differ just in the size of the code with no
clear advantage on one or the other side

* the cost of the abstraction does not appear at this level yet

* the size of the code of the applications which use CRime stacks is about
16% larger (~13.000 bytes)

e execution time for the sequence of operations open—>send—->recv->close is
~256 ms in Rime and 622 ms in CRime (a factor of ~2.4 higher)

* CRime consumes 1.6 % more energy than Rime

The ProtoStack declarative
language and the Workbench

The ProtoStack declarative language -
requirements

e Simplicity
 as friendly as possible to the target user group

* Machine readable
* to facilitate easy manipulation by machines

e Standardized

 arelatively widely adopted, open and stable standardized approach is preferred to a less
stable and potentially proprietary approach

* Interoperability

* to facilitate the interoperability of systems so that potential reference implementations of
the framework can be easily connected at this level of abstraction

* Support for knowledge representation and logic reasoning

» should also support emerging logical reasoning for self-configuration of communication
networks

The ProtoStack declarative language

Subject (Resource) Predicate (Property) Object (Statement)
e uses the RDF data model crime:c_abc rdf:type cpan:Module

crime:c open rdfs:subClassOf crime:Function

* the custom vocabulary builtby
creating the CRime ontology

* the Turtle syntax which is human readable and can easily be
transformed in XML if needed.

//turtle crime:c abc rdf:type cpan:Module

ProtoStack
configuration steps

e fact specification, translation
and storage

e workbench rendering
* manual stack composition

* validity checking and code
generation

2/20/2013

« C | @ localhost/plugins/editor/examples/crimelayers/

Wirelt WiringEditor - crime layers demo

() New ‘@Load ‘_ESa\fe ‘@,u Help ‘

Modules

Input Controls -

Qutput Controls -

Single hop module -

Multi hop medule =

Add-ons module -

channel_no | 121

Description

Nodeld 0.0 [w]

Minimap

|

Fact specification, translation and storage

4 example-crime.c m@ rf230bb.c | [rf230bb.c | [€ packetbuf.c | [€ amoduleh | [€] c_unicasth | ™1
4

$define RREP STACK ID 2

struct stack i {
struct pipe *pip;
struct stackmodule i *amodule;
uint8 t modno; 1
uint8 t time trigger flg;

Current Selections:
Sesame server: http://localhost:8081/sesame [
Composable Rime (crime) [

ik h "0 itory:

struct stack i *stack;

void printaddr (int stack id):

void stack_init();

void stack_open(struct stack i *stack):

void stack_close (struct stack 1 *stack);

int stack_send(struct stack i *stack, uint8 t moduleid);
void stack_recv(struct stack i *stack):

e:c_app)

ule is mandatorv and it assumes there's an application.

void stack_dropped(struct statk_i *stack) s
wvoid stack_timedout(struct stackmodule_i *module) ;

#endif /* STRCK H */

application.’
//@prefix rdf: <http://www.w3.org/199%%/02/22-rdf-syntax-ns#>
//@prefix cpan: <http://downlode.org/rdf/cpan/0.1/cpan.rdf#> . crime:c_app | crime:hasScope | crime:input
//@prefix owls: <http://www.daml.org/services/owl-s/1.1B/Process.owlé> . crime:c app crime:defines crime:c app open
//@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> . - - - -
//@prefix daml: <http://www.daml.org/2002/03/agents/agent-ont#> crime:c_app | crime:defines | crime:c_app_close
//@prefix damlproc: <http://www.daml.org/services/owl-s/1.1/Process.owl#> . crime:c_app | crime:defines crime:c_app_recv

//@prefix
//@prefix

//turtle
//turtle
//turtle

//turtle
//turtle
//turtle
//turtle

®xsd:

<http://www.w3.org/2001/XMLSchema#> .

crime: <http://sensorlab.ijs.si/2012/v0/crime.owl#> .

crime
crime
crime

crime
crime
crime
crime

:c_app rdf:type cpan:Module

:c_app rdfs:comment The c app module is mandatory and it assumes there's an

:c_app crime:hasScope crime:input

:c_app open rdf:type crime:c open

:c_app close rdf:type crime:c close
:c_app_recv rdf:type crime:c recv .
:c_app send rdf:type crime:c_send .

m

Subject Predicate Object

Context

crime:c_app

rdf:tvpe

cpan:Module

crime:c_app

rdfs:comment

"The c_app module is mandatory and it assumes there's an

crime:c_app

crime:defines

crime:c_app_send

35

http://localhost:8081/workbench/repositories/crime/explore?resource=crime:c_app
http://localhost:8081/workbench/repositories/crime/explore?resource=crime:c_app
http://localhost:8081/workbench/repositories/crime/explore?resource=crime:c_app

Workbench rendering

€ - C | [localhost/plugins/editor/examples/crimelayers/index.html

Wirelt WiringEditor - crime layers demo

@ New ||3Load ‘LESave ‘@Help ‘

Modules [<]
- 2 Input Controls =

Lice 8 L TH
_opec

i X
ERERLDOIH

e: C_a p p) Output Controls =

Single hop module -

ule is mandatory and it assumes there's an application.

5] [] []
of<:' %' o@ .
Subject Predicate Object Context \e ® @
@ %]
crime:c_app | rdf:tvpe cpan:Module
L]
crime:c_app | rdfs:comment | "The c_app module is mandatorv and it assumes there's an °
application.” o
crime:c_app | crime:hasScope | crime:input L.I
crime:c_app | crime:defines crime:c_app_open Multi hep module -
crime:c_app | crime:defines crime:c_app_close L’:}. o
crime:c_app | crime:defines crime:c_app_recv '.'t_ ‘ ‘:__‘:.
crime:c_app | crime:defines crime:c_app_zend [(9]
f.\o/ o
.i;"""‘-«-.
\e
[] @

2/20/2013

Manual stack composition

€ - C Olocalhost/plugins/editor/examples/crimelayers/

W

QY

Wirelt WiringEditor - crime layers demo

(@ New ‘@Load |\E|Save |-@)Help |

-

€ - C' |[localhost/plugins/editor/examples/crimel ayers/index.htmil

Wirelt WiringEditor - crime layers demo

@ New ||3 Load ‘-—-Ei Save ‘-@ Help ‘

Modules [<]

Input Centrels -

TR,
tapen i

TR FRERLBE

Output Controls -

Single hop module -

Modules [<]

Input Controls =

TN
e pipy anctales 012

)
ERERBOL

Qutput Controls -

Single hop module

1
Iﬂ

-]
=
=

receiver (2.0

time_trigger_flg [7]
trigger_interval

frigger_no

trigger_th

i
/
[]
e
L] ‘E\l e @

2/20/2013

E ¢_broadcast

sender |1.0

time_trigger_flg [7]
trigger_interval
trigger_no

trigger_th

Add-ons module -

—

B

Properties

Stack (c_unicast
Name .

Desaription
A
e
Minimap -

Validity checking

€ - C Olocalhost/plugins/editor/examples/crimelayers/

Wirelt WiringEditor - crime layers demo

@ New |QLoad |L;E|Sa\re |-Q) Help |

*

Modules (<]
Input Controls -
TOEENE

A bty £t diet
ey
eI D

Qutput Controls -
Single hop module -

receiver 2.0

time:_trigger_flg [7]
trigger_interval

trigger_no

trigger_th

Droadaca

sender |1.0
time_trigger_flg []
trigger_interval
trigger_no

trigger_th

Properties

Stack [C_unicast
Name: 4

Desaription

Minimap

Current Selections:
Sesame server: http://localhost:8081/sesame [
Composable Rime (crime) [

Repository:

\e:c_app)

ule is mandatory and it assumes there's an application.

Subject Predicate Object Context
crime:c_app | rdf:tvpe cpan:Module

crime:c_app

rdfs:comment

"The c_app module is mandatorv and it assumes there's an

application.”

crime:c_app

crime:hasScope

crime:input

crime:c_app

crime:defines

crime:c_app_open

crime:c_app

crime:defines

crime:c_app_ close

crime:c_app

crime:defines

crime:c_app_recv

crime:c_app

crime:defines

crime:c_app_send

38

& A > & >
T ST
e LSS
.() [N - -(ﬁ C.J
° °) . \39\ '§ 0’& '0'¢ Q‘Q
| ~ (9% % O oy o7
(]
Rules tor vall Ity CheCKINg 3
*]
g A g £ &
X
© c’OQ ,,5-'0 0& Q‘;\O% CDOQ
X 7 c??/ SIS oSS DS
(#Simplies &'\\0 ST &'\\o
(#Sand y €97 0? AR
(#Sisa ?X #$ComputerProgramModule-CW) L VAR, W W

* Rules are currently hard | e el
#Sisa ?Y #SComputerProgramModule-CW \ \ \ \ \

(#ShasScope ?Y #Smultihop)

CO d e d i n t h e Se rve r (#ShasScope ?x #Smultihop) \ &

) 5 4 [>
. . (#Son-Abstract ?X ?Y) & &K 00‘-‘ &
X
* For experimentation | G —
& Q@% Q@"’ S \0@‘& interface

(#Simplies

using Service Oriented [/

(#Sisa ?X #SComputerProgramModule-CW)

amodule[1]

(#Sisa ?Y #SComputerProgramModule-CW))
N EtWO r kSI a re a S O n e r (#$hasScope ?Y #$singlehop) %o{‘\ ,@5& 0Q©Q \0‘50 é.s) Top interface
(#ShasScope ?x #Smultihop) & / pa b

supporting rules hasto | SIS
AN /

be integrated in the e
(#Simplies \ \ \ \ \

Systel I l (#Sand
(#Sisa ?X #SComputerProgramModule-CW) \ \ & ¥ &
(#Sisa ?Y #SComputerProgramModule-CW) @é’ Q& & O%Q‘ be’
(#ShasScope ?Y #Ssinglehop) o7 - $2 9 c/g;
%{) §Q 7 %90 7 §Q 7 @

(#ShasScope ?x #S$singlehop)

)
(#Son-Abstract ?X ?Y)

amodule[0]

)

o
39

2/20/2013

Code generation

18l amodule.c [I@ c_echo_app.h [I@ stack.c 2

€ - C Olocalhost/plugins/editor/examples/crimelayers/

Wirelt WiringEditor - crime layers demo

(£ New |@Load |_ESave |-9,|Help |

-

Modules [<]

Input Controls -

Qutput Controls -

2/20/2013

Single hop module - E

receiver (2.0

time:_trigger_flg [7]
trigger_interval

trigger_no

trigger_th

¢_broadcast

sender 1.0

time_trigger_flg []
trigger_interval

trigger_no

trigger_th

c_unicast
#

rimeaddr_t addr;

//@defsStack
struct pipe *pil;

pi0 = (struct pipe*) calloc(l,

struct channel *ch0;

ch0 = (struct channel*) calloc(l,

stack[0] .pip = pi0;

stack[0] .pip->channel = ch0;

stack[0] .modno = 4;

struct stackmodule i *amodule0O;

sizeof (stxruct pipe));

sizeof (struct channel)):

amodulel = (struct stackmodule_i*) calloc(
stack[0] .modno, sizeof (struct stack‘module_i));

addr.u8[0] = 0; addr.u8[1]

set node addr(0, OUT, SENDER, &addr);

static struct packetbuf attrlist c_attributes0[] =

{

C_UNICAST ATTRIBUTES PACKETBUF ATTR_LAST

r

}.

stack[0] .pip->channel no = 0;

stack[0] .pip->attrlist = c_attributes0;

stack[0] .pip—->channel->channelno
stack[0] .pip->channel-»attrlist
stack[0] .amodule = amodule0;

amodule0[0].stack_id = 0;
amodule0[0] .module id = 0;
amodulel[0] .parent = NULL;

stack[0] .pip->channel no =

stack[0] .pip->channel no;

stack[0] .pip->attrlist;

amodule0[0].c open = c channel open;
amodulel[0].c close = c channel close;

amodule0 [0] .C_recv = c_abc_input;
amodule0[0].c send = c_rj_me_output;

40

Reprogram the testbed

€ - C Olocalhost/plugins/editor/examples/crimelayers/ w A
Wirelt WiringEditor - crime layers demo
(&) New |@Load |--|Ei Save |@,|Help |
Modules (<] B
Input Controls - Properties -
T Stack [c_unicast
Name .
Desaription
Qutput Controls -
" P
Single hop module - E
Nogeld (00 [w]
: Minimap -
receiver (2.0]
time:_trigger_flg [7] Infos ¥

20/2013

trigger_interval
trigger_no

trigger_th

sender 1.0

time_trigger_flg []
trigger_interval

trigger_no

trigger_th

ﬂli_i'

| COM3 13200 bps, 81, no handshake | | Settings

recevad 61
— sending 200
recepred 62
received 62
received 62
recepred 62
received 62
received 62
— sending 206
recerved 63
received 63
recepred 63
recerved 63
received 63
recepred 63
— sending 207

recered G4

Unicast demo

Service Oriented Networks with
ProtoStack

Service Oriented Networks

* a network which makes use of Service Oriented Architecture
principles to provide end-to-end transport services
» Services are described, published and can be discovered
* Queried related to aspects of services are supported
* Services can be composed

Describing and publishing services with
ProtoStack

e Description is done in the .h files using RDF language, the CRime
ontology and other relevant vocabularies

* Publishing is done using the Sesame tool (triple store + web server)

€ - C ©@localhost:8081/workbench/repositories/c-rime/explore?resource=<http%3A%2F%2Fsensors.ijs.si%2Fcrir

m Workbench

Current Selections:
Sesame server: hitp:/flocalhost:8081/sesame [
Repository: Composable Rime (c-rime) [

tp://sensors.ijs.si/crime#c_open>)

Summary
Namespaces Subject Predicate Object Context
Contexts =http://sensors.ijs.si/crime#c app open= rdfitvpe | <http://sensors.ijs.sifcrime#c open=
Types =http://senszors.ijs.si/crime#c abc open- rdf:tvpe | <http://sensors.ijs.si/crime#c open=
Explore | o . o -
- P <http://zenzors.ijz.zijcrime#c broadcast cpens rdf:tvpe | <http://zensors.ijs.zi/crime#c open>
uery
Export =http://sensors.ijs.sifcrime#c channel open= rdfitvpe | <http://sensors.ijs.sifcrime#c open=
| o =<http://senszors.ijz.zijcrime#c mesh open= rdf:tvpe | <http://senzors.ijz.ci/crimesc open>
SPARQL Update =<http://sensors.ijs.si/crime#c multihop open= rdf:tvpe | <http://sensors.ijs.zifcrime#c open>
Add <htip://sensors.ijs.sifcrime#c netflood open= rdf:tvpe | <http://sensors.ijs.zi/crime#c open>
Remove zhttp://sensors.ijs.sifcrime#c polite open> rdf:tvpe | <http://sensors.ijs.cifcrime#c open>
== =http://sensors.ijs.si/crime#c route discoverv open= | rdfitvpe | <http://sensors.ijs.sifcrime#c open=
System <http://sensors.ijs.si/crime#c unicast open= rdf:tvpe | <http://sensors.ijs.si/crime#c open=
Information

Resource: |ihttp:HSensors.ijs.si!cri me#c_open>

2/20/2013 Limit results: | 100 [] 44

Querying for published ProtoStack service

* Can be manually done through the knowledge base’s workbench
e Can be done by using SPARQL tools.

e Can be automatic between ProtoStack instances, typically used for
synchronization

. PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
. PREFIX cpan: <http://downlode.org/rdf/cpan/0.1/cpan.rdf#>
. PREFIX crime: <http://sensors.ijs.si/crime#>
. PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
SELECT ?name ?category ?description
WHERE {

?name rdf:type crime:Function .

P Nouph WNR

0. }

2/20/2013

45

Composition of services using ProtoStack

 Composition of services for information transport using ProtoStack
 Manual composition of services
* where all the necessary reasoning is performed by the human.

* Semi-automatic composition of services
* where the human is guided in the decision making process by machine reasoning.

* Automatic composition of services
 where all the reasoning is performed by machines.

Cognitive networks with
ProtoStack

Cognitive Networks

* Networks augmented by a knowledge plane that
contains two key elements

* A representation of relevant knowledge about the scope
(device, homogenous network, heterogeneous network,
etc.)

* A cognition loop which uses Al techniques inside its states
(machine learning techniques, decision making techniques,
etc.)

2/20/2013

TTTTT

Sense

/7 N
1
\ - /
S 3

48

OooNOTUVIE, WN PR

Knowledge representation in ProtoStack

PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX
PREFIX

SELECT

?stack rdf:type :Stack .
?stack :formedOf :c_reliable .
?stack :consumesPower ?power .

}

. ORDER

LIMIT

:<http://sensorlab.ijs.si/2012/v0/crime.owl#>
rdfs:<http://www.w3.0rg/2000/01/rdf-schema#>
Process:<http://www.daml.org/services/owl-s/1.1B/Process.owl#>
owl:<http://www.w3.0rg/2002/07/owl#>
xsd:<http://www.w3.0rg/2001/XMLSchema#>

rdf:<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
cpan:<http://downlode.org/rdf/cpan/0.1/cpan.rdf#>

?stack WHERE {

BY ?power
1

2/20/2013

ack_1)

op

Subject

Predicate

Object

Context

istack 1 | rdfitvpe owl:Namedindividual | =file://C: fakepath /knowledze representation.owls
istack i1 | rdf:tvpe :8tack <file://C: [fakepath /knowledze reprezentation.owls
:stack 1 | :consumesPower | 4 <file: //C: [fakepath /knowledse representation.owl=
:stack i | :hasFootprint 574z <file: /C: fakepath /knowledse representation.owl=
istack 1 | rdfs:comment "reliable multihop” <file: //C: fakepath /knowledze reprezentation.owls
istack 1 | :formedOf :c_broadcast <files//C: ffakepath /knowledse reprezentation.owls
istack 1 | :formedOf :c_channel <file://C: [fakepath /knowledze reprezentation.owls
istack 1 | :formedOf :c_multihop <file: //C: [fakepath /knowledse representation.owl=
istack 1 | :dformedOf :c_reliable <file://C: fakepath /knowledze reprezentation.owl=
istack 1 | :formedOf ¢ unicast <files//C: fakepath /knowledse reprezentation.owls

Network layer cognitive loop with cross-layer
information

* Path cost in terms of hop no — could be too simplistic at times

e Additional parameter to be considered is RSSI
RSSI sensing

3
: sese
[[|]
O channel l I model
A O \ f
O route selection
3 <«

packet transmission

2/20/2013 50

time_trigger_flg []

trigger_interval

trigger_no

trigger_th

¢_multihop

esender 1.0

ereceiver |2.0
time_trigger_flg []

trigger_no

trigger_th

time_trigger_flg []
trigger_interval

trigger_no

trigger_th

= broadca

time_trigger_flg []
trigger_interval

trigger_no

trigger_th

Multihop routing

Route discovery

E c_route_discovery

time_trigger_flg []
trigger_interval

trigger_no

time_trigger_fig [
trigger_interval

trigger_no

time_trigger_fig [7]
trigger_interval

trigger_no

:ﬁ c_broadcast

time_trigger_flg []
trigger_interval

trigger_no

trigger_th

Y 2

crammel_

Mesh stack with CRime

e Communication service

* Management service

time_trigger_flg []
trigger_interval

trigger_no

trigger_th

time_trigger_flg []

trigger_interval

trigger_no

trigger_th

communication management
service service

Embedded Deuicgl

Network layer cognitive loop with cross-layer
. . . RSS! sensing
information using ProtoStack £
/7 Ny
* CRime extended with c_model source files wherenne _J _J model
all the model specific logic is stored \ |
* The model creation and update functions are called
from the c_route_discovery module. m . route selection
* This model is used to update the route costs in the packet transmission
routing table
e ¢_multihop module then uses the resulting routing v A v)
table when sending packets
 RSSI is straightforward using the Rime packet ! T ! T
attributes which are visible to all the modules of v | v |

the stack

commumnication management
Service seryice

2/20/2013 52
Embedded Device

Network layer cognitive loop with cognitive

radio
* Assuming a cognitive radio device able to sense the
spectrum and dynamically select available channels, |~ RSS! sensing
the simple routing problem becomes more complex P m\
 the routing table has to contain entries for each
potentiallygavailable channel e —] —J o
* have a model for channel availability (e.g. based on energy \ /
detection) (_ route selectio
* At packet transmission time, the routing module needs to backet transmission
consult the channel availability and decide ~ “*'*® —ssisensing
which channel is suitable for transmission. w

channel I channel state

-— (free/busy
2/20/2013 53

Network layer cognitive loop with cognitive
radio using ProtoStack

* that the CR loop is implemented ¢ CR loop is implemented using

independently of Crime CRime modules

* the CR loop periodically e ¢_channel _scan and
updating the communication c_channel_availability _model
service’s pipe structure modules may need to be

inserted between the
c_broadcast and c_channel
modules of the communication
service

* c_model module may need to be
generalized

 if the radio module can also switch
between channels, then this has
o be reflected in the network
model and routing table

2 A b

Network layer cognitive loop with radio
environment maps

* Information related to the occupancy of the channels

is most easily acquired from radio environment map
RSSI sensing

services through a control channel |
* nodes can request information from the remote database, e N
* such information is periodically broadcast. channel l | odel
* The network level cognitive loop needs to take into \)

account spectrum occupancy information at the time
of making a decision

Act Decide route selection
+—

packet transmission / \

from CR from REM database

2/20/2013 55

Network layer cognitive loop with radio
environment maps using ProtoStack

e dedicated management service communicating with
the REM has to be implemented.
RSSI sensing

* Can be done using existing CRime modules or developing
Sense
/7 N\

additional modules that are necessary
channel l l model

v 1 7 1 \ J

Act Decide route selection
+—

1 ' I '
' | . I
\ 4 | 7 | packet transmission / \

from CR from REM database

communication management
service service

2/20/2013 Embedded Device 56

Network layer cognitive loop with
connectivity broker

* The connectivity broker

* is a concept that provides abstractions necessary for
developing large scale cognitive wireless network
environments by enabling joint optimization of spectrum
resources

connectivity agent

* operates in the control and management planes of the
networks v

* the core concept behind it is the connectivity agent.

* ProtoStack tool can be used to implement node-level | ¢
functionality corresponding to the connectivity agent

service

service

Embedded Device

Conclusions

* Presented the ProtoStack tool and how it can be used in several
experimentation scenarios

 The software will be soon available for download on GitHub

* The corresponding testbed will be available as soon as LOG-a-TEC
port of Contiki is fully completed

Questions?

