

IMEC SENSING ENGINE

CONFIGURATION AND CONTROL

OVERVIEW

- General
- C-application
- (Matlab)
- ► OMF
- Connectivity brokerage

Software API stack

SENSING ENGINE	High level functions and config structs
COMPONENTS	Function library per component
PLATFORM	Platform dependent basic function set
INTERFACE	USB access to hardware

- All written in C
- Available as libraries + header files
- Only highest level of the API is addressed in this overview, others are transparent to the user

C-APPLICATION

- Configuration of the platform manually (or with shellscripts)
- Application written in C based on header files, libraries available for building executable
- Output of Sensing Engine is available as an array of floats in the application

C-APPLICATION AVAILABLE FUNCTIONS

- se_open
 - Opens a Sensing Engine instance (SE)
- se_init
 - Initializes the given SE
- se_close
 - Closes the given SE
- se_check_config
 - Checks the given SE configuration for errors
- se_configure
 - Configures the given SE with the given configuration
- se_start_measurement
 - Starts a measurement cycle
- se_stop_measurement
 - Stops a continuous measurement cycle
- se_get_results
 - Copies the result of the last measurement into a given array
- se_get_status
 - Fetches the status of the given SE

© IMEC 2013 / CONFIDENTIAL

imec

C-APPLICATION CONFIGURATION STRUCT

struct se_config_s {

se_mode_t se_mode;

intl6_t fe_gain;

uint32_t first_channel;

uint32_t last_channel;

uint32_t bandwidth;

uint16_t fft_points;

uintl6_t dvb_nr_carriers;

float dvb_guard_interval;

float threshold_power; };

- se_mode can be any of the following: FFT_SWEEP,WLAN_G, WLAN_A, BLUETOOTH, ZIGBEE, LTE, DVB_T, DVB_POWER
- Others: front-end gain, first and last channel, RF bandwidth, # fft-points, # carriers for DVB-T, guard interval for DVB-T, (optional) threshold to compare power number to
- For more info, see the Sensing Engine User Manual

imec

MATLAB

- Only the lowest level interface functions are available as Matlab-functions:
 - spiderback_open
 - spiderback_init
 - spiderback_close
 - spiderback_reset
 - spiderback_write_single_reg
 - spiderback_read_single_reg
 - spiderback_write_burst
 - spiderback_read_burst

(spiderback stands for Spider PCB Backbone)

 .mexglx file is used to address modified interface layer

- OMF is used in iMinds wilab.t to control experiments on the nodes of the testbed
- OMF (in our case) is really an extension of the Capplication
 - C-application based on header-files/libraries is still needed
 - C-application must be modified manually up front
- What the OMF script does for you
 - Configuring the correct node
 - Configuration of the platform (with shell-script) on the node
 - Building of the (modified) application
 - Starting the application on the correct node
 - Data insertion in SQL-database

OMF

- Advantages
 - Direct database access
 - Scheduling / timing / synchronization possibilities
 - More applications at once can be started
 - Possibility to control other testbed facilities simultaneously

CONNECTIVITY BROKERAGE SERVER-CLIENT MODEL

- Principle
 - A single server application is running on the PC connected to the hardware sensing platform
 - Multiple clients can connect to the server to perform measurements
 - Server queues all incoming requests and executes them sequentially
- Server
 - Translates commands (sent in protocol buffer (message type x) via ZMQ layer) into a configuration of the SE
 - Initiates the SE measurements
 - Parses the Sensing Data in a protocol buffer (message type y) and sends it out via the ZMQ layer

CONNECTIVITY BROKERAGE SERVER-CLIENT MODEL

- Client
 - Requests an SE measurement by sending a command in a protocol buffer (message type x)
 - Receives the results in a protocol buffer (message type y)

EXPERIMENT IEEE 802.11G - IEEE 802.15.4 OVERLAP

WiFi traffic on channel 2 (CF 2.417GHz, BW 22MHz)

- Overlaps with Zigbee channels 12 to 15

 imec Sensing Engine scanning Zigbee channels II to I7 (CF 2.405 GHz up to 2.435 GHz, BW 2 MHz)

Figure 4-1: The IEEE 802.11 and IEEE 802.15.4 channels

© IMEC 2013 / CONFIDENTIAL

QUESTIONS? REMARKS?

CONFIGURATION AND CONTROL

mdesmet@imec.be

