

Overview of the CREW project

How CREW can facilitate the development of complex wireless systems?

Ingrid Moerman - iMinds

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 258301 (CREW project).

Homogeneous → heterogeneous technologies

Homogeneous → heterogeneous technologies Low data rate → bandwidth hungry applications

■ Homogeneous → heterogeneous technologies
 ■ Low data rate → bandwidth hungry applications
 ■ Low → high density of devices

Homogeneous → heterogeneous technologies Low data rate → bandwidth hungry applications Low → high density of devices Low → high spectrum occupancy

- overcrowded unlicensed bands
- underutilized licensed bands

Homogeneous → heterogeneous technologies Low data rate bandwidth hungry applications Low → high density of devices Low → high spectrum occupancy

- overcrowded unlicensed bands
- underutilized licensed bands
- No/low interference
 - → high interference

Main research questions?

How to efficiently use the available resources (spectrum, energy)?

How to measure the available resources?

How to adapt the radios (transmitters and receivers) and networks to the wireless environment and the user needs?

Theoretical analysis	 PHY layer & link level analysis Network analysis ideal wireless environment simplified link models
Simulations	 Large-scale validation possible, BUT under oversimplified, unrealistic wireless conditions Interference, spectrum sensing and hardware characteristics hard to simulate
Experimental validation	 Realistic wireless environment, BUT using HW is difficult HW is expensive → small-scale experiments experiments are hard to configure experiments are often not replicable

establish an open federated test platform, facilitating experimentally-driven research on

- advanced spectrum sensing
- cognitive radio (CR)
- cognitive networking (CN)
- spectrum sharing in licensed and unlicensed bands

IP CREW

Cognitive Radio Experimentation World

- FP7 call 5 (FIRE Future Internet Research and Experimentation Initiative)
- October 2010 September 2015
- 8 core partners
- 3+6 open call partners
 - UDUR (UK)
 - TUIL (DE) OC1
 - TECNALIA (ES)
 - IT (PT)
 - CMSF (PT)
 - CNIT (IT)
 - WINGS (GR)
 - UTH (GR)
 - NICTA (AU)

CREW is ...

- bringing together and open up testbeds for supporting research on spectrum sensing, cognitive radio & cognitive networking
- facilitating access to heterogeneous testbeds
- augment existing testbeds with novel cognitive components
- bringing together expertise on experimentation
- researching & offering better methodologies for experimentation (repeatability, reproducibility, comparability)

... in view of

validating advanced cognitive solutions (new concepts & algorithms) using CREW testbeds and CREW methodologies

CREW federated platform

Ghent testbed – iMinds w-iLab.t

200 + 60 wireless nodes (WiFi/ZigBee/Bluetooth) cognitive components: USRP, WARP, AirMagnet, IMEC sensing agent

Zwijnaarde environment

imec advanced spectrum sensing

Advanced spectrum sensing Combination of analog & digital FE in compact device

Berlin testbed - TWIST

204 + 16 wireless sensor nodes (Tmote Sky/EyesIFXv2/Shimmer2) cognitive components: Wi-Spy, BEE 2 FPGA platform

Dublin testbed - IRIS reconfigurable radio

25 IRIS reconfigurable cognitive radio platforms + 25 USRP TV-bands license

Signalion SORBAS (3 eNodeB + 3 UE) Signalion HALO 430 SDR equipment Indoor & outdoor LTE license

Ljubljana outdoor testbed – LOG-a-TEC

THALES

Transceiver API for SDR architecture (compliant to WINNF) Multi-antenna LTE detection

Mock up of airplane

CREW Roadmap

Some Open Call 2 results

Problem: mobile node looses connectivity → low QoS **Solution**: wireless mesh serving network + control channel

Online Monitoring of Spectrum Sensing Delay and Energy Consumption in the CREW Benchmarking Framework

Transmitter Wi-Fi Node

Receiver Wi-Fi Node

NITOS ACM Cards

Integration of NITOS advanced CM card with the iMinds' w-ilab.t Testbed Architecture

Coexistence of microphones and TV broadcast using geo-location database & spectrum monitoring

Sistemas de Informação

UHF spectrum sensing in Ofcom TVWS pilot

See presentation:

Daniele Lacamera (Altran): "How to develop and validate a scalable mesh routing solution for IEEE 802.15.4 sensor networks"

What's next?

Open up wireless testbeds

• (diverse) tools for experimentation

Offer

- legacy + CR hardware
- methodologies for experimentation
- Fed4FIRE compliant wireless testbeds
 - unified tools for experimentation
 - fixed + portable testbeds

Offer

- flexible radio hardware + software platforms
- radio and network control via UPIs

- Intelligent wireless network control
 - flexible hardware + intelligent software
 - dense heterogeneous and small cell networks
 - on-demand end-to-end wireless connectivity

What is Fed4FIRE?

Federation

Easy to use Single account Single tool Common support

of

testbeds

Diverse devices e.g software defined networking, Cloud, bigdata, wireless, sensor

Testbeds in Fed4FIRE

Accessible testbeds: single tool and account

CREW by numbers

Contact

- Ingrid Moerman iMinds
- Phone: +32 9 33 14 925
- Mail: ingrid.moerman@intec.ugent.be

Website

- www.crew-project.eu
- https://github.com/WirelessTestbedsAcademy

CREW is still in OPEN ACCESS mode.

Experimenters are welcome and we will be happy to support you!

