

How to develop and validate a scalable mesh routing solution for IEEE 802.15.4 sensor networks

Altran Benelux

Leuven, 29 October 2015 Daniele Lacamera <daniele.lacamera@altran.com>

picoTCP

The reference TCP/IP Stack for the Internet of Things

A fully featured highly portable TCP/IP Stack designed for embedded devices

Modularity

make ARCH=stm32 CROSS_COMPILE=arm-none-eabi- IPV4=1 TCP=1 UDP=1

Portability

- CPU Architecture independent
- 8, 16, 32 & 64 bit. Big or Little endian
- Bare Metal / Embedded OS / OS / RTOS
- 10+ different platforms already supported
- New platforms easily added
- (RT)OS easily added: e.g. FreeRTOS \rightarrow 10 days

Туре	Device	Porting effort
MCU	PIC24Fxxx	4 days
MCU	CC430, MSP430	1 day
Comm.	Broadcom BCM43362	3 days
Comm.	Microchip MRF24WG	2 days

Intelligen

Quality

Quality oriented development environment

- Test Driven Development
- Continuous Integration & Automated testing (Virtual testing is possible)
- Code Quality check: Tiobe
 - Tics Continuous improvement

Full compliance with IETF TCP/IP standards

RFC 768 User Datagram Protocol (UDP) RFC 791 Internet Protocol (IP) RFC 792 Internet Control Message Protocol (ICMP) RFC 793 Transmission Control Protocol (TCP) RFC 816 Fault Isolation and Recovery RFC 826 Address Resolution Protocol (ARP) RFC 879 The TCP Maximum Segment Size and Related Topics RFC 894 IP over Ethernet RFC 896 Congestion Control in IP/TCP Internetworks RFC 919 Broadcasting Internet Datagrams RFC 922 Broadcasting Internet Datagrams in the Presence of Subnets RFC 950 Internet Standard Sub-netting Procedure RFC 1009 Requirements for Internet Gateways RFC 1034 Domain Names Concepts and Facilities RFC 1035 Domain Names Implementation and Specification RFC 1071 Computing the Internet Checksum RFC 1112 Internet Group Management Protocol (IGMP) RFC 1122 Requirements for Internet Hosts Communication Layers RFC 1191 Path MTU Discovery **RFC 1323 TCP Extensions for High Performance** RFC 1337 TIME-WAIT Assassination Hazards in TCP RFC 1534 Interoperation Between DHCP and BOOTP RFC 1542 Clarifications and Extensions for the Bootstrap Protocol

Code Quality	TAS	
picotcp master	Measured by	
Higher Quality	10.000	
A		
В	В	
C		
D E		
E		
Lower Quality		
TIOBE Quality Indicator (based on TQI definition 2)	80,19%	
Measurement performed: 13-Feb-2014		
Code Coverage	ABCDEF	
Abstract Interpretation	ABCDEF	
Code Complexity	ABCDEF	
Compiler Warnings	ABCDEF	
Coding Standards	ABCDEF	
Code Duplication	ABCDEF	
Fan Out	ABCDEF	
Dead Code	ABCDEF	

This product has been tested with the utmost care against the TIOBE Quality indicator definition. The definition can be found at www.tiobe.com.

picoTCP

Community driven

- Full source code freely available
- Public issue-tracking system

GitHub	This repository	Search or type a command	③ Explore Fea	atures Enterprise Blog	Sign up Sign in		
tass-belg	jium / <mark>picoto</mark>	ср			★ Star 8 § Fork 0		
icoTCP is a fre	e TCP/IP stac	k implementation					
🕞 978 co	mmits	21 branch	lo releases	10 contributors	<> Code		
					lssues 4		
1 🎾 P branch:	master • pic	cotcp / ⊛			17 Pull Requests		
OLSR: Fixed MID)/TC forwarding or	der, removed debug			🗈 Wiki		
anielinux aut	hored 2 days ago			latest commit 39dfb10613 🔂			
RFC	FC add RFC 2132 : DHCP options (task #171) 9 months ago				4~ Pulse		
docs	cs Fixed description of the field priority in the ipfilter_add API			3 days ago	Graphs		
include	include OLSR fixes (big stack objects), 4 days ag				& Network		
modules	OLSR: Fixe	d MID/TC forwarding order, re	moved debug	2 days ago			
rules	Imported ols	sr module		9 days ago	HTTPS clone URL		
stack	ack OLSR fixes (big stack objects),		4 days ago	https://github.com			
test	test OLSR: Fixed MID/TC forwarding order, removed debug			2 days ago	Subversion. ③		
.gitignore	updated gitig	gnore		4 months ago	Clone in Desktop		
COPYING	Changed LIC	CENSE to GPL2. Removed th	e do-not-distribute clause from th	8 months ago	Download ZIP		

ar

picoTCP

Free/Open Source licensing policy in place

- Freely distributed under the GNU General Public License for the benefit of the community
- Proprietary license available at user's option, when the platform code can't fully comply with the terms of GPL
- Full copyright is owned by TASS: different licensing agreements are possible for special cases

github!

http://www.github.org/tass-belgium/picotcp

Mesh networks

Nodes

- low-power
- limited resources (RAM, Flash)
- small payload
- short RF range
- limited availability (nodes turning off, moving off-range, ...)

Reaching a distant node in the mesh

- requires other node to forward the message
- every node in the path knows the route to destination

Mesh networks

Cognitive networking

- Each node adapts its routing table to reflect the current topology
- Nodes communicates to each other to retrieve updated topology information

Protocols standardized by IETF

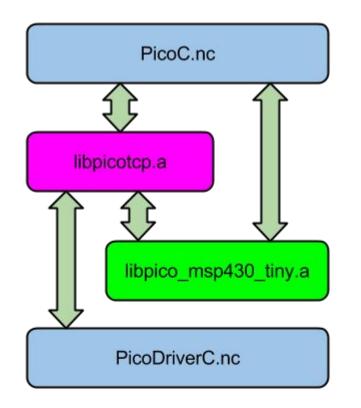
- OLSR proactive dynamic routing
- AODV reactive dynamic routing
- 6loWPAN L2+IPv6 based routing

Technical Challenge

- port picoTCP to tinyOS
- establish TCP/IP routes on small nodes using IP Fragmentation
- test the dynamic routing mechanism on a real MESH network

Goals

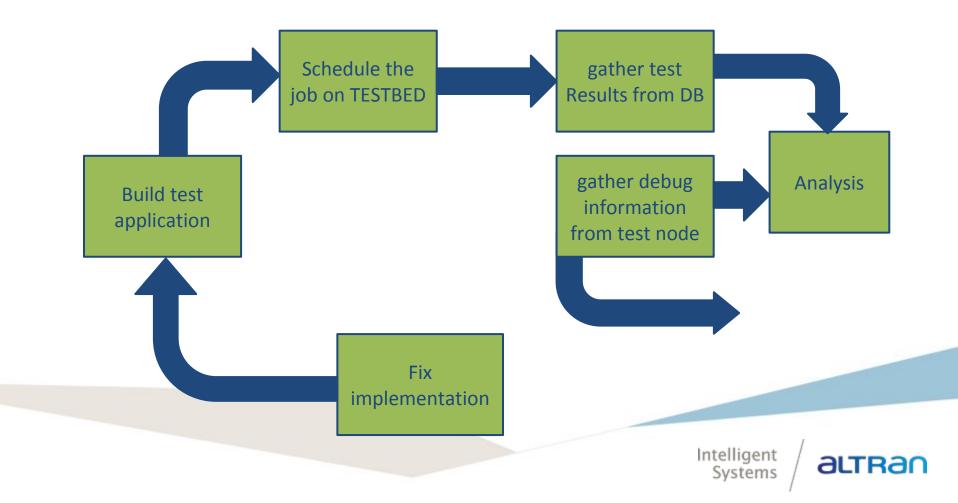
- provide picoTCP driver for IEEE802.15.4 radio device
- improve OLSR support
- integrate real test scenarios with emulation and virtualization tools
- release validated software as Open Source



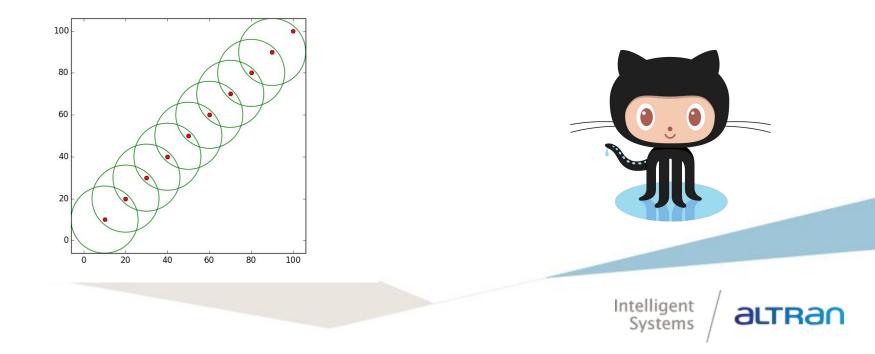
Step 1: port picoTCP to tinyOS

- Modify tinyOS application Makefile to link with the picoTCP library
- add a nesC wrapper for the picoTCP API
- add a nesC wrapper for the radio Driver

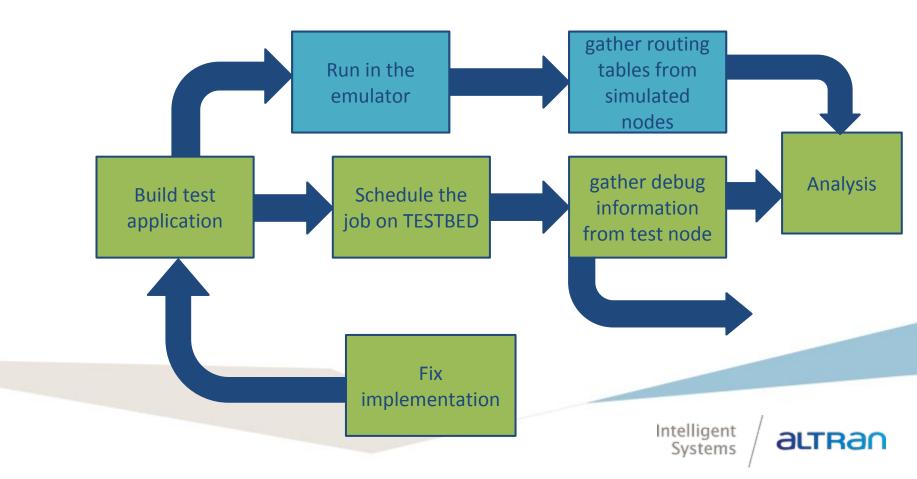
Step 2: putting it all together



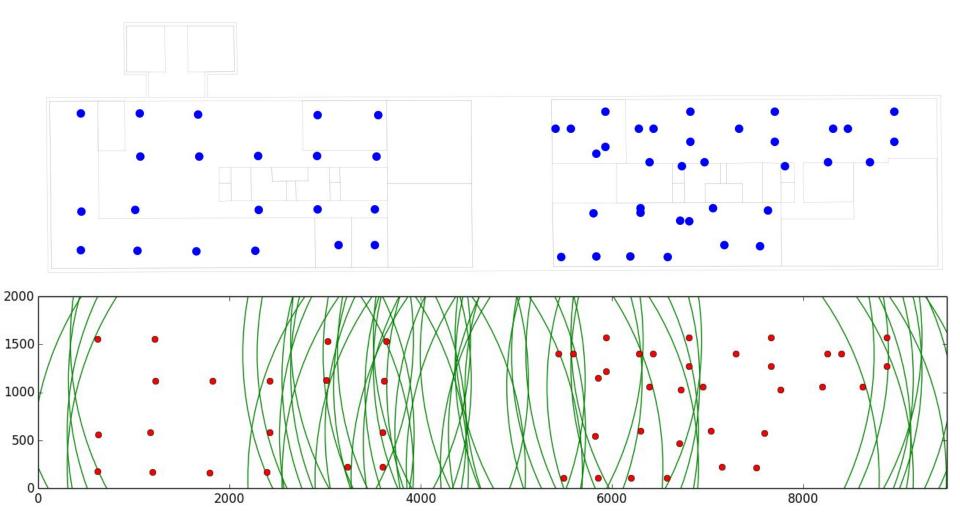
Step 3: Program the nodes in the testbed



Once the development loop is in place: compile, test, debug, repeat



In order to speed up development, an emulator was written inspired by the wilab-t testbed


- released under GPL
- available on github:
- https://github.com/danielinux/geomess

The emulator introduced a new workflow, to debug protocol-specific issues not related to the porting

The emulator can reproduce the exact location of the physical nodes

the routing table from a test node on the emulator is the same as the same node in the real testbed

• the emulator is validated

==== ROUTING TABLE =====								
Route to 000000e0/0	00000f0, gw	00000000,	dev:	picomesh00aa,	metric:	1		
Route to 00002a0a/0	000ffff, gw	00000000,	dev:	picomesh00aa,	metric:	1		
Route to 75002a0a/f	ffffff, gw	ba002a0a,	dev:	picomesh00aa,	metric:	3		
Route to 77002a0a/f	ffffff, gw	ba002a0a,	dev:	picomesh00aa,	metric:	3		
Route to 7b002a0a/f	ffffff, gw	ba002a0a,	dev:	picomesh00aa,	metric:	2		
Route to 7d002a0a/f	ffffff, gw	ba002a0a,	dev:	picomesh00aa,	metric:	2		
Route to 81002a0a/f	ffffff, gw	b9002a0a,	dev:	picomesh00aa,	metric:	2		
Route to 82002a0a/f	ffffff, gw	ba002a0a,	dev:	picomesh00aa,	metric:	2		
Route to 83002a0a/f	ffffff, gw	ba002a0a,	dev:	picomesh00aa,	metric:	2		
Route to 84002a0a/f	ffffff, gw	ba002a0a,	dev:	picomesh00aa,	metric:	2		
Route to 87002a0a/f	ffffff, gw	ba002a0a,	dev:	picomesh00aa,	metric:	2		
Route to 89002a0a/f	ffffff, gw	ba002a0a,	dev:	picomesh00aa,	metric:	2		
Route to 8c002a0a/f	ffffff, gw	ba002a0a,	dev:	picomesh00aa,	metric:	3		

Similar results can be obtained using Cooja, a wireless sensor simulator which is able to run the tinyOS firmware image linked with picoTCP

Netwo	rk 📃 🔲 🔀	 Simulation control 	Note Note	s 💷
w Zoom		Run Speed limit	Enter notes here	
	300m 😜	Start Pause Step Relo	ad	
		Time: 00:14.300 Speed: 1.71%		
			Mote output	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0200	File Edit View		
	10 69	Time Mote Message		
- 50 - 50	984990		~Eu~~Eu~~Eu~~Eu~~Eu~~Ev~E~~E7~~E~~E	
49 46 62 40 65			<mark>~Eu~~Eu~~Eu~~Eu~~Eu~~E;~~E;~~E ~~EA~~Efk</mark> ~Eu~~Eu~~Eu~~Eu~~Eu~~E<~~Epj~~E0~~EQ~~E	
49 40 62 41 65	6940 6753 60 60 647	00:14.275 ID:11 Eu Eu Eu Eu		E8 E6 E9 E#I E≱ E
			~Eu~~Eu~~Eu~~Eu~~Eu~~E~~E~~E~~EW~~E~~ED	~~ET~~E~~E~~E%~~E!~~E~~E~~
			~~Ee&~~E~~Ej~~EV~~E6~~E~~E~~E~~E ~~E~~Ec~~EF~~E~~E~~Ev%~~EQM~~Ei~~E~~E4~~E	
			E~~E~~Ee&~~E~~EU~~E`~~E~~E,~~EW~~E	
		Filter:		
	Timeli	ine showing 58 motes		90
Edit View Zoom Events Motes				
				· · · · · · · · · · · · · · · · · · ·
			Intellig	

picoMesh: Crew testbed results


OLSR application running on wilab-t

- Nodes change colors depending on the number of route entries
- Links have different colors, based on the number of hops:
 - green indicates 1-hop links
 - orange indicates 2-hops links
 - red indicates >2-hops links

picoMesh: Crew testbed results

OLSR application running on wilab-t

picoMesh: project conclusions

- successfully ported picoTCP to tinyOS
- developed an Open Source MESH network emulator, based on geographical positions of the nodes and their ranges
- improved OLSR (RFC3626) implementation for picoTCP
 proven feasibility of real IPv4 MESH networking over a IEEE802.15.4 topology
- solved the hidden-node problem using dynamic routing

Intelligen

Feedback

w-iLab.t eases to scale the number of nodes

- using JIRA as an issue tracker is a very efficient way of problem solving
- CREW team has been very supportive during the whole duration of the experiments
- All of this has helped a lot to reach the expected results

Statistics

- Nr of reservation slots: 223
- Avg duration of reservation slot: 14 minutes
- Avg number of wireless nodes: 28.9
- Avg number of mobile nodes: 0
- Total duration of reservations: 2.2 days
- First slot: March 17th 2014
- Last slot: November 14th 2014

Recent improvements

- January 2015: the company becomes "Intelligent Systems/Altran". The focus remains on research and development of advanced networking solutions
- Looking for alternatives to OLSR in the field of cognitive networking
- Q1.2015: Implemented Ad-hoc On-demand Distance Vector Routing (AODV) following specifications from IETF RFC 3561
- Q3.2015: Experimental implementation for 6LoWPAN, including 802.15.4 Datalink layer mesh topologies, following specifications from IETF RFC 4944

AODV

- Different approach from OLSR
- On-demand route discovery (reactive rather than proactive topology composition)
- More ultra-low power friendly
 - routes are discovered only when needed)
 - No overhead traffic generated by the discovery algorithm when no payload traffic is present
- Solution based on network layer routes, applicable to different physical layers (802.15.4, 802.11 ad-hoc, etc.)
 Part of design and implementation is in common with
 - 802.11s
- Link-failure awareness

6LoWPAN

- Based on datalink layer addresses
- Native solution for compressing and fragmenting IPv6 packets
- De-facto standard for 802.15.4 networks, proposed by IEEE
- Support for Broadcast, Multicast and Unicast traffic
- Built-in mesh solution for multi-hop routing
- Cross-layer extensions for IPv6 Neighbor Discovery algorithm (RFC 6775)
- Production ready in picoTCP by Q1.2016

Future experiments

- The validation of the three available solution and the performance comparisons can benefit from the use of a real Testbed like the one provided by CREW
- Implementing the newer cognitive networking solutions would only require a small porting effort

Other parameters can be measured and compared

- power consumed
- worst-case route determination time
- impact of fragmentation strategies on throughput and packet loss
- topology robustness against node failures

Thanks!

Questions?

Daniele Lacamera <daniele.lacamera@altran.com>

