
How to develop and validate a scalable mesh routing solution
for IEEE 802.15.4 sensor networks

Altran Benelux

Leuven, 29 October 2015
Daniele Lacamera <daniele.lacamera@altran.com>

picoTCP

Modularity Portability

Performance Quality

The reference TCP/IP Stack for the Internet of Things

A fully featured

highly portable

TCP/IP

Stack
designed for

embedded devices

Modularity

SELECT COMPILE Your
picoTCP

make ARCH=stm32 CROSS_COMPILE=arm-none-eabi- IPV4=1 TCP=1 UDP=1

Portability

■ CPU Architecture independent
■ 8, 16, 32 & 64 bit. Big or Little endian
■ Bare Metal / Embedded OS / OS / RTOS

■ 10+ different platforms already supported
■ New platforms easily added

■ (RT)OS easily added: e.g. FreeRTOS → 10 days

Quality

■ Quality oriented development environment
● Test Driven Development
● Continuous Integration & Automated testing (Virtual

testing is possible)
● Code Quality check: Tiobe

– Tics Continuous improvement

■ Full compliance with IETF TCP/IP standards

RFC 768 User Datagram Protocol (UDP)
RFC 791 Internet Protocol (IP)
RFC 792 Internet Control Message Protocol (ICMP)
RFC 793 Transmission Control Protocol (TCP)
RFC 816 Fault Isolation and Recovery
RFC 826 Address Resolution Protocol (ARP)
RFC 879 The TCP Maximum Segment Size and Related Topics
RFC 894 IP over Ethernet
RFC 896 Congestion Control in IP/TCP Internetworks
RFC 919 Broadcasting Internet Datagrams
RFC 922 Broadcasting Internet Datagrams in the Presence of Subnets
RFC 950 Internet Standard Sub-netting Procedure
RFC 1009 Requirements for Internet Gateways
RFC 1034 Domain Names Concepts and Facilities
RFC 1035 Domain Names Implementation and Specification
RFC 1071 Computing the Internet Checksum
RFC 1112 Internet Group Management Protocol (IGMP)
RFC 1122 Requirements for Internet Hosts Communication Layers
RFC 1191 Path MTU Discovery
RFC 1323 TCP Extensions for High Performance
RFC 1337 TIME-WAIT Assassination Hazards in TCP
RFC 1534 Interoperation Between DHCP and BOOTP
RFC 1542 Clarifications and Extensions for the Bootstrap Protocol
RFC 1812 Requirements for IP Version 4 Routers
RFC 1878 Variable Length Subnet Table For IPv4
RFC 1886 DNS Extensions to Support IP Version 6 (1)
RFC 2018 TCP Selective Acknowledgment Options
RFC 2131 Dynamic Host Conguration Protocol (DHCP)
RFC 2132 DHCP Options and BOOTP Vendor Extensions
RFC 2236 Internet Group Management Protocol, Version 2
RFC 2460 Internet Protocol, Version 6 (IPv6) Specification (1)
RFC 2581 TCP Congestion Control
RFC 2616 Hypertext Transfer Protocol { HTTP/1.1
RFC 2663 IP Network Address Translator (NAT) Terminology and Considerations
RFC 3042 Enhancing TCP's Loss Recovery Using Limited Transmit
RFC 3315 Dynamic Host Configuration Protocol for IPv6 (DHCPv6) (1)
RFC 3376 Internet Group Management Protocol, Version 3 (2)
RFC 3517 A Conservative Selective Acknowledgment (SACK)-based Loss Recovery Algorithm for TCP
RFC 3782 The NewReno Modification to TCP's Fast Recovery Algorithm
RFC 4291 IP Version 6 Addressing Architecture (1)
RFC 6691 TCP Options and Maximum Segment Size (MSS)

picoTCP

■ Community driven
● Full source code freely available
● Public issue-tracking system

■

picoTCP

■ Free/Open Source licensing policy in place
● Freely distributed under the GNU General Public License for

the benefit of the community
● Proprietary license available at user's option, when the

platform code can't fully comply with the terms of GPL
● Full copyright is owned by TASS: different licensing

agreements are possible for special cases

■ github!
● http://www.github.org/tass-belgium/picotcp

Mesh networks

■ Nodes

● low-power

● limited resources (RAM, Flash)

● small payload

● short RF range

● limited availability (nodes turning off, moving off-range, …)

■ Reaching a distant node in the mesh
● requires other node to forward the message

● every node in the path knows the route to destination

Mesh networks

■ Cognitive networking
● Each node adapts its routing table to reflect the current

topology

● Nodes communicates to each other to retrieve updated

topology information

■ Protocols standardized by IETF
● OLSR - proactive dynamic routing

● AODV - reactive dynamic routing

● 6loWPAN - L2+IPv6 based routing

picoMesh

■ Technical Challenge
● port picoTCP to tinyOS
● establish TCP/IP routes on small nodes using IP Fragmentation
● test the dynamic routing mechanism on a real MESH network

■ Goals
● provide picoTCP driver for IEEE802.15.4 radio device
● improve OLSR support
● integrate real test scenarios with emulation and virtualization

tools
● release validated software as Open Source

picoMesh

■ Step 1: port picoTCP to tinyOS
● Modify tinyOS application Makefile to link with the picoTCP

library
● add a nesC wrapper for the picoTCP API
● add a nesC wrapper for the radio Driver

picoMesh

■ Step 2: putting it all together

picoMesh

■ Step 3: Program the nodes in the testbed

picoMesh

■ Once the development loop is in place: compile, test,
debug, repeat

Build test
application

Schedule the
job on TESTBED

gather debug
information

from test node

Fix
implementation

Analysis

gather test
Results from DB

picoMesh

■ In order to speed up development, an emulator was
written inspired by the wilab-t testbed

● released under GPL
● available on github:
● https://github.com/danielinux/geomess

■ The emulator introduced a new workflow, to debug
protocol-specific issues not related to the porting

picoMesh

Schedule the
job on TESTBED

gather debug
information

from test node

Fix
implementation

Analysis

gather test
Results from DB

Run in the
emulator

gather routing
tables from
simulated

nodes

Schedule the
job on TESTBED

Build test
application

picoMesh

■ The emulator can reproduce the exact location of the
physical nodes

picoMesh

■ the routing table from a test node on the emulator is
the same as the same node in the real testbed

● the emulator is validated

==== ROUTING TABLE =====
Route to 000000e0/000000f0, gw 00000000, dev: picomesh00aa, metric: 1
Route to 00002a0a/0000ffff, gw 00000000, dev: picomesh00aa, metric: 1
Route to 75002a0a/ffffffff, gw ba002a0a, dev: picomesh00aa, metric: 3
Route to 77002a0a/ffffffff, gw ba002a0a, dev: picomesh00aa, metric: 3
Route to 7b002a0a/ffffffff, gw ba002a0a, dev: picomesh00aa, metric: 2
Route to 7d002a0a/ffffffff, gw ba002a0a, dev: picomesh00aa, metric: 2
Route to 81002a0a/ffffffff, gw b9002a0a, dev: picomesh00aa, metric: 2
Route to 82002a0a/ffffffff, gw ba002a0a, dev: picomesh00aa, metric: 2
Route to 83002a0a/ffffffff, gw ba002a0a, dev: picomesh00aa, metric: 2
Route to 84002a0a/ffffffff, gw ba002a0a, dev: picomesh00aa, metric: 2
Route to 87002a0a/ffffffff, gw ba002a0a, dev: picomesh00aa, metric: 2
Route to 89002a0a/ffffffff, gw ba002a0a, dev: picomesh00aa, metric: 2
Route to 8c002a0a/ffffffff, gw ba002a0a, dev: picomesh00aa, metric: 3

picoMesh

■ Similar results can be obtained using Cooja, a wireless
sensor simulator which is able to run the tinyOS
firmware image linked with picoTCP

■

picoMesh: Crew testbed results

■ OLSR application running on wilab-t
● Nodes change colors depending on the number of route

entries
● Links have different colors, based on the number of hops:

– green indicates 1-hop links
– orange indicates 2-hops links
– red indicates >2-hops links

picoMesh: Crew testbed results

■ OLSR application running on wilab-t

picoMesh: project conclusions

■ successfully ported picoTCP to tinyOS
■ developed an Open Source MESH network emulator,

based on geographical positions of the nodes and their
ranges

■ improved OLSR (RFC3626) implementation for picoTCP
■ proven feasibility of real IPv4 MESH networking over a

IEEE802.15.4 topology
■ solved the hidden-node problem using dynamic routing

■ w-iLab.t eases to scale the number of nodes

■ using JIRA as an issue tracker is a very efficient way of
problem solving

■ CREW team has been very supportive during the whole
duration of the experiments

■ All of this has helped a lot to reach the expected results

Feedback

Statistics

■ Nr of reservation slots: 223
■ Avg duration of reservation slot: 14 minutes
■ Avg number of wireless nodes: 28.9
■ Avg number of mobile nodes: 0
■ Total duration of reservations: 2.2 days
■ First slot: March 17th 2014
■ Last slot: November 14th 2014

■ January 2015: the company becomes “Intelligent
Systems/Altran”. The focus remains on research and
development of advanced networking solutions

■ Looking for alternatives to OLSR in the field of cognitive
networking

■ Q1.2015: Implemented Ad-hoc On-demand Distance
Vector Routing (AODV) following specifications from
IETF RFC 3561

■ Q3.2015: Experimental implementation for 6LoWPAN,
including 802.15.4 Datalink layer mesh topologies,
following specifications from IETF RFC 4944

Recent improvements

AODV

■ Different approach from OLSR
■ On-demand route discovery (reactive rather than

proactive topology composition)
■ More ultra-low power friendly

○ routes are discovered only when needed)
○ No overhead traffic generated by the discovery

algorithm when no payload traffic is present
■ Solution based on network layer routes, applicable to

different physical layers (802.15.4, 802.11 ad-hoc, etc.)
■ Part of design and implementation is in common with

802.11s
■ Link-failure awareness

6LoWPAN

■ Based on datalink layer addresses
■ Native solution for compressing and fragmenting IPv6

packets
■ De-facto standard for 802.15.4 networks, proposed by

IEEE
■ Support for Broadcast, Multicast and Unicast traffic
■ Built-in mesh solution for multi-hop routing
■ Cross-layer extensions for IPv6 Neighbor Discovery

algorithm (RFC 6775)
■ Production ready in picoTCP by Q1.2016

Future experiments

■ The validation of the three available solution and the
performance comparisons can benefit from the use of a
real Testbed like the one provided by CREW

■ Implementing the newer cognitive networking
solutions would only require a small porting effort

■ Other parameters can be measured and compared
○ power consumed
○ worst-case route determination time
○ impact of fragmentation strategies on throughput

and packet loss
○ topology robustness against node failures

Thanks!

Questions?

Daniele Lacamera <daniele.lacamera@altran.com>

