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RADIO ENVIRONMENTAL MAPS

The basic idea is to generate high-resolution spatio-temporal
empirical models (and true maps) on the radio environments

These maps can be used to data-mine useful regularities, and e.g.
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Opens up many exploitation possibilities
Localization by finger printing
Smart interference minimization and cancellation
Radio environment based policy changes

Radio environment based optimization decisions

FARAMIR has strong focus on applications beyond dynamic spectrum

access, especially within existing and future cellular networks




GENERATING AND EXPLOITING REM

Context acquisition and recognition

Using radio finger-prints to quickly understand where and in
which condition cognitive radio is

Deploying novel hardware solutions for gathering spectrum use
information

Considering indoor and precision localization techniques
Using advanced classifiers to recognize the state of the system

Context-based optimization and adaptation

RRM can decide appropriate optimizers and state transitions
only if it knows the context of the decision making

Location and propagation information are currently one of our
key context parameters
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FARAMIR AT A GLANCE

Objective of the project is to research and develop techniques to increase
radio environmental and spectral awareness of future wireless systems

Spectrum sensing hardware efficiently integrated to handheld devices

Measurements performed at multiple nodes in a cooperative fashion on a
network level

Radio Environmental Maps providing basis for system optimization

Cooperatively Constructed Radio |—.
\WP5 Environmental Map: .
Resource Management and Optimization: - Describes spectrum use
- Exploits the information listed in the REM - - Incorporates measurements from all nodes
Nk Provides improved configuration for each node - Includes mapping of interference sources
- Manages spectrum use ; - Includes locations of participating nodes
- Minimizes interference - etc.

- Optimizes protocol parameters

WP4

Neighbourhood Mapping component:
G - Identifies interference sources

- Provides location estimates for those

> Spectrum Sensing Engine:
Cooperative, q y - Enhapced sens§ng algorithms
specirum-aware % { - Specifically designed hardware
- Low power consumption

network

WP3

Interference source
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PROJECT WORKFLOW

NETS
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FUNCTIONAL ARCHITECTURE FOR REMS

Multiple
Measurement
Capable
Devices
(MCDs)

=—gp- Data plane
=== g Control plane

REM User

NETS
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NOVEL SENSING SOLUTIONS

* Fully reconfigurable and implemented in 40nm
CMOS technology

— Receiver RF operating frequency is programmable
from 100 MHz to 6 GHz

— Channel bandwidth is programmable between 1 and
40 MHz

* Fast switching between different RF frequencies
and channel bandwidths

* Low noise figure: 2.4 to 4 dB below 3 GHz,
together with low power consumption

* Well suited for low power flexible sensing
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PROTOTYPING WORK
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ENABLING REAL-TIME REM CONSTRUCTION
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APPLICATIONS IN CELLULAR SYSTEMS

Exploring several applications of these techniques directly to
cellular networks with our industrial partners

Examples of key scenarios considered
Automatic neighbor relation
Minimization of drive tests
Femtocell radio resource management
Introduction of new technologies through refarming

Both empirical work and simulations (using actual planning
tools of the operators) used for the work

Prototyping with actual LTE hardware (including TVWS
operation and applications)
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HIERARCHICAL MAPPING TO CELLULAR NETWORKS
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EXAMPLE OF REM CONSTRUCTION
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Figures courtesy of Dr. B. Sayrac, FT
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CONSTRUCTING OUTDOOR REM

* System model

— BS located in a urban area, on the rooftop of Orange Labs
premises at Issy-les-Moulineaux (40 m height)
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Figures courtesy of Dr. B. Sayrac, FT
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FEMTOCELL SCENARIO

Self-X femtocells can be significantly enhanced by
REMs

REM can be constructed using geo-localized
measurements performed by mobile terminals,
neighboring femtocells and macro base stations

In FARAMIR, we hierarchical REM architecture

Different instances can sit in different elements (terminals, Home
NodeB, HeNB Gateway, covering Macro BS, OMC)

Femtocell scenario requires accurate indoor models
and localization methods
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LONG-TERM INDOOR PROPAGATION MODELS

A campaign of 109 hours including four full measurement
days, LOS and NON-LOS scenarios

100
80+ o
o
[0}
c
60} 3
@
Q
@
e I Normal
0 I Normal 2 B Laplace
I Laplace § ] Nakagami
20 B |Nakagami o :IWeilbull
I Weibull B Rician
Bl Rician
O ;

Time (hours) Time (hours)



"R e
INDOOR PROPAGATION DYNAMIC MODEL
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CORRELATION EFFECT
o
é Primary transmitter

G
Pn Y Secondary transmitter

@ Primary receiver

Ly, = Fuld,y) + %y (function F,, and distribution of y,, are known)

E_[(X - ECO)(Y - E(}’))l

Ox0y

corr(yy, Xy) =

ry reand rp € [-1,1] and the the correlation matrix is positive semi-definite
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Range of P, is 40 dB
due to changes in the
correlation matrix

7,=10.9 dB /’
(16QAM, 1/2)
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NEED FOR TESTBEDS

* Cellular networks, especially with dense femtocell
deployment
— Difficult to simulate with all details

— Measurements and performance metrics are difficult to
obtain

— Indoor propagation tools are available but there is a need
for analytical models

* Building REMs requires detailed knowledge of
operational measurements and system performance
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SUMMARY AND CONCLUSIONS

Radio Environmental Maps (REMs) and radio context information
are clearly something that can have a big impact on future wireless
networks

In spectrum domain the proof of concept and a lot of
measurements are ready, but we are also learning new problems

Several lines of ongoing work for resource management and
network diagnostics applications, with promising initial results

A testbed providing detailed information about the radio
environment is of high interest, especially in cellular networks and
indoor environments
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